
Mink: Integrating the Live and Archived Web Viewing
Experience Using Web Browsers and Memento

Mat Kelly, Michael L. Nelson, and Michele C. Weigle
Old Dominion University

Department of Computer Science
Norfolk, Virginia 23529 USA

{mkelly,mln,mweigle}@cs.odu.edu

ABSTRACT
We describe Mink, a new web browser extension that pro-
vides a different model for integration of the live and archived
web. While a user browses the live web, Mink actively
queries the archives and reports other instances of the page
in the archives without requiring active querying by the user.
Further, by querying the archives dynamically and asyn-
chronously, a user can view the extent to which the currently
viewed page on the live web has been archived and proac-
tively submit a request to various archives using an overlay
on the live web page and a simple interface.

Categories and Subject Descriptors
H.3.7 [Online Information Services]: Digital Libraries
and Archives

1. INTRODUCTION
To better integrate the past and live web, implementa-

tions of the Memento framework [1] provide the facilities to
query the archives (using URI and HTTP Accept-Datetime
headers as parameters) to provide resources on the past web
called mementos. Several Memento clients exist including
browser-based plugins for Mozilla Firefox [2] and Google
Chrome1 as well as native app-based mobile clients for both
iOS and Android [3]. While Memento support for mobile
is already problematic [3], requiring a user to change the
contexts of their native browsers gives an ad hoc feel of re-
quiring a separate client (e.g., an app). Retaining use to
the client normally used to view the live web (i.e., a web
browser) is more fluid to the user. The memento browser
extensions that exist, however, use either a modal approach
(MementoFox sticks in either live or time travel mode) or
requires the user to either re-opt to the past with each page
visited or rely on the server for selection of the past/live

1https://chrome.google.com/webstore/detail/
memento/jgbfpjledahoajcppakbgilmojkaghgm

978-1-4799-5569-5/14/$31.00 c©2014 IEEE.

web. We have developed a new browser extension, Mink2,
that instead uses an unobtrusive alert model to remind the
user about the past. This model allows the user to quickly
poll through the mementos available while maintaining the
paradigm of relying on what is returned by the server to
determine whether the user stays in the past or returns to
the present. The additional feature of allowing the user to
seamlessly jump from the past to the present while main-
taining a quick return to the past makes Mink’s approach
unique.

2. ANOTHER APPROACH
The browser-based model of accessing archives is prefer-

able to that of mobile apps. Bombarding the Memento prox-
ies and archives with frequent requests for content negoti-
ation is computationally expensive. We have implemented
another approach3 that utilizes the Memento TimeGate and
TimeMap capabilities to provide all references to a URI,
which reduces the negotiation complexity and still provides
a more integrative model between the live web and the
archived web using the user’s web browser.
We chose the Google Chrome browser extension environ-

ment due to the browser’s popularity, but the logic is simple
enough to be ported to other browsers. When a user loads
a web page with Mink enabled, the extension queries a me-
mento aggregator with the URI as a parameter and expects
a Memento TimeMap in return. While processing the re-
quest, the extension’s icon is present at the bottom right of
the browser viewport and provides a “spinning” animation
until the TimeMap is received (Figure 1). If the TimeMap is
paginated with a reference to a subsequent TimeMap, a but-
ton is provided to the user to invoke the iterative fetching of
all TimeMaps from the aggregator (which is temporally ex-
pensive) or to stop iterating at a number of times set in the
extension’s preferences, customizable by the user. Regard-
less of whether the iterative procedure is executed, a badge
is set atop the extension icon indicating how many memen-
tos are available for direct access to the extension. This
facility allows a user to browse around the web to observe
how well pages are archived without needing to commit to
browsing the archived web nor to proactively submit a re-
quest to the archives to receive this archival metadata about
the live web.
Once a user has accessed an archived page using Mink, the

interface provides an additional button that allows the user
to return to the live web with a single click for easy compar-
2Named for Minkowski Space
3Available at https://github.com/machawk1/mink

Figure 1: Mink’s basic user interface for mementos that do not require multiple queries to the aggregator.

ison with the archived version. This is accomplished using
a combination of HTML5 localStorage referencing and uti-
lizing the native Memento rel=”original” constructs from
the retrieved TimeMaps. Utilizing a hybrid approach makes
the extension more robust for discrepancies in the data re-
trieved from TimeMaps and allows for decoupling from the
TimeMap dependency in the cases where this value is not
present.

3. ENCOURAGING USERS TO ARCHIVE
If the aggregator reports that no mementos exist for the

URI, the extension displays an alert icon using the same
overlay method and an unobtrusive system notification (Fig-
ure 2(a)). If the user interacts with the alert icon, the UI
normally used to browse which mementos were retrieved
from the aggregator is instead replaced with Mink’s one-
click “Archive Now” interface (Figure 2(b)). Selecting a
button, each labeled with a web archive’s name, sends a
request for the page to be archived by Internet Archive
(archive.org), Archive.today, WebCite (webcitation.org), or
Perma.cc, with an additional option to specify a custom
service. Further, an “All” button sends a request for the
page to be archived by all services available. The archive
request procedure is accomplished by sending an Ajax re-
quest to each of the archives’ web accessible forms, which
would normally require manual interaction with the respec-
tive archive’s interface. The code to accomplish this is ex-
tensible and will support any service that has a web-based
submission process.

(a) Notification that page is not in archives

(b) Interface showing one-click options to archive page

Figure 2: Mink’s Archive Now interface

4. DOES IT SCALE?
When a user submits a URI to be archived using the web

services available, there exists latency in both the Memento
aggregator and the Memento interface to the archive (i.e.,
querying the archives using Memento) as to when the me-
mento exists in generated TimeMaps. To account for this,
Mink requests the memento using the TimeGate interface of
the aggregator instead of simply the TimeMap. Doing this
overcomes the issue at the aggregator level, though other
issues with caching TimeMaps exist [4].
One of the primary reasons for content negotiation to

the archives in the Memento Framework is the large quan-
tity of content contained within. Even for URIs with a

Figure 3: For a large number of mementos (shown
here for CNN.com), Miller columns provide an al-
ternative to simple drop down menu selection, which
would be taxing for browsers because of the large
number of entries in the select box.

small number of mementos, displaying an interface to al-
low the user to select a memento was initially problematic,
so we explored other approaches. While this is handled
in other Memento clients using a Memento-Datetime slider
and date-based content negotiation, we did not want to in-
troduce the latter’s increased computational complexity re-
quirement. Instead, we experimented with other approaches
of drill-down date selection and an adaptation of IA’s “bub-
ble” interface using a more common date selection model
and a less busy density encoding (Figure 3) using Miller
columns, a paradigm commonly utilized in modern operat-
ing system and thus likely familiar to the user.
A further issue is the temporal complexity required to

retrieve a comprehensive TimeMap from the Memento ag-
gregator for a URI, which is dependent on the speed of re-
sponse from the aggregator. This is especially noticeable
for well-archived sites, which require multiple iterations of
querying a Memento aggregator to be comprehensive of all
mementos available for the URI. We are hoping that fur-
ther experimentation and the inevitable streamlining of the
aggregators will help to resolve this issue.

5. REFERENCES
[1] H. Van de Sompel et al., “HTTP Framework for

Time-Based Access to Resource States – Memento,”
IETF RFC 7089, December 2013.

[2] R. Sanderson et al., “Implementing Time Travel for the
Web,” Code4Lib Journal, April 2011.

[3] H. Tweedy et al., “A Memento Web Browser for iOS,”
in Proc. ACM/IEEE Joint Conference on Digital
Libraries, 2013, pp. 371–372.

[4] J. F. Brunelle and M. L. Nelson, “An Evaluation of
Caching Policies for Memento TimeMaps,” in Proc.
ACM/IEEE Joint Conference on Digital Libraries,
2013, pp. 267–276.

