InterPlanetary Wayback: The Permanent Web Archive

Sawood Alam, Mat Kelly, and Michael L. Nelson
Old Dominion University, Department of Computer Science, Norfolk VA, 23529, USA
{salam,mkelly,mIn}@cs.odu.edu

ABSTRACT

To facilitate permanence and collaboration in web archives,
we built InterPlanetary Wayback to disseminate the contents
of WARC files into the IPFS network. IPFS is a peer-to-
peer content-addressable file system that inherently allows
deduplication and facilitates opt-in replication. We split
the header and payload of WARC response records before
disseminating into IPFS to leverage the deduplication, build
a CDXJ index, and combine them at the time of replay. From
a 1.0 GB sample Archive-It collection of WARCs containing
21,994 mementos, we found that on an average, 570 files can
be indexed and disseminated into IPFS per minute. We also
found that in our naive prototype implementation, replay
took on an average 370 milliseconds per request.

1. INTRODUCTION

The recently created InterPlanetary File System (IPFS) [2]
is showing the potential to facilitate data persistence through
a peer-to-peer network for dissemination and discovery. In
this paper we introduce a scheme and software prototype®,
InterPlanetary Wayback (ipwb), that partitions, indexes,
and deploys the payloads of archival data records into the
IPFS peer-to-peer “permanent web” for sharing and offsite
redundant preservation and replay.

The Web ARChive (WARC) format is an ISO standard? to
store live web archive content in a concatenated record-based
file. IA’s web crawler, Heritrix [3], generates WARC files
to be read and the content re-experienced in an archival
replay system. OpenWayback® (written in Java) and pywb?
(written in Python) are two such replay systems. We leverage
and extend on the pywb codebase in this work.

To access the representations stored by an archival crawler,
a replay system must refer to an index that maps the original
URI (or, URI-R in Memento [4] terminology) and the time
of capture (Memento-Datetime) to the record stored in a
WARC file. CDX is one such indexing format along with
the extended CDXJ format [1], with the latter allowing arbi-
trary JSON objects within each index record. In our initial
prototype we take advantage of pywb’s native support for
CDXJ and use the arbitrary JSON data to store metadata

"https://github.com/oduwsdl/ipwb
*http://www.digitalpreservation.gov/formats/fdd/
£fdd000236.shtml
Shttps://github.com/iipc/openwayback
“https://github.com/ikreymer /pywhb

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

JCDL ’16 June 19-23, 2016, Newark, NJ, USA

© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4229-2/16/06. .. $15.00

DOL: http://dx.doi.org/10.1145/2910896.2925467

SURT_URI DATETIME {

"id": "WARC-Record-ID",

"url": "ORIGINAL_URI",

"status": "3-DIGIT_HTTP_STATUS",

"mime": "Content-Type",

"locator": "urn:ipfs/HEADER_DIGEST/PAYLOAD_DIGEST"
}

Figure 1: A single-line CDXJ record template, shown on
multiple lines for readability

about WARC records within IPFS (i.e., the content digest
needed for lookup in IPFS).

IPFS is a content addressable peer-to-peer distributed
file system [2]. By extracting the HTTP response body
(henceforth “payload”) from the records within a WARC file,
IPFS allows our prototype to generate a signature uniquely
representative of this content. This payload can then be
pushed into the IPFS system and retrieved at a later date
when the URI-M is queried. Content addressability allows
for network-wide deduplication of the content. The digest of
the content is used as the key to locate the content in the
peer-to-peer network.

2. IMPLEMENTATION

CDXJ is a text-based file format that we utilize to store
indexes of the archived content. Each line in the CDXJ file
holds one index record. The line begins with a SURTed URI®
and datetime followed by a single-line JSON block that stores
reference to the content and other arbitrary metadata (Fig-
ure 1). We utilize the last field in a CDXJ record (a JSON
object) to store the HT'TP response headers and payload
digests, original status code when the URI-R was crawled,
the MIME-type of the content, and a UUID to identify a me-
mento. The two digests that are used to locate the contents
from the IPFS system and build the response are encoded
into a single field called “locator” using a URN scheme®.

In designing ipwb, it was critical to consider the HTTP
header returned at crawl time separately from the HTTP
response body. The HTTP response header’s content will
change with every capture, as the datetime returned from
a server is temporally dependent. Compare this to the re-
sponse body, which very often contains the same content on
each access, more often for static resources. Were the HT'TP
header and response body combined then added to IPFS,
every IPFS hash would be unique, nullifying the potential
for de-duplication of identical content. Further, ipwb only re-
tains response records. The rationale for this design decision
is that the state of the art of web archive replay systems do
not consider the WARC request record upon replay. While
including request records may be useful in the future (for
instance, to take into account the user-agent originally used
to view the live website), WARC content is currently fully
replayable without preserving the request records.

Shttp://crawler.archive.org/articles/user manual/glossary.
html#surt
Shttps://www.w3.org/TR/uri-clarification/

https://github.com/oduwsdl/ipwb
http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml
http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml
https://github.com/iipc/openwayback
https://github.com/ikreymer/pywb
http://dx.doi.org/10.1145/2910896.2925467
http://crawler.archive.org/articles/user_manual/glossary.html#surt
http://crawler.archive.org/articles/user_manual/glossary.html#surt
https://www.w3.org/TR/uri-clarification/

Indexer index record

extract HTTP
headers+payloads

WARC Store

index record(s)

Replay
combine
header+payload

payload
IPFS Store

Figure 2: The ipwb indexer and replay workflow

Our prototype works in two phases, illustrated in Figure 2
with red (Indezxing) and blue (Replay) annotations:

e [ndering — extracts records from the WARC store one
record at a time, splits each record into HTTP header
and payload, stores the two pieces into IPFS (compressing
before storing, if necessary), and generates a CDXJ record
using the returned references and some other metadata
from the WARC record.

e Replay — receives request from users containing a lookup
URI and optionally a datetime, queries for matching record
in the CDXJ, fetches the corresponding header and payload
from the IPFS Store (using references returned from the
index record), combines them, and performs necessary
transformation to build the response to the user.

3. EVALUATION

We tested our ipwb prototype on a data set from an
Archive-Tt collection” about the 2011 Japan Earthquake
consisting of 10 WARC files, each about 100 MB when
compressed, totaling 1.0 GB on disk.

We indexed the WARCs using pywb’s cdx-indexer and
ipwb’s indexer to generate a standard CDXJ file and one
containing the IPFS-hashes (as described in Section 2), re-
spectively. Generating ipwb’s CDXJ file for 21,981 mementos
in the data set took 66.6 minutes including the time required
to push the data into the IPFS network and producing the
IPFS hashes to be included in the CDXJ. The average in-
dexing rate inclusive of the data dissemination to IPFS was
9.48 files per second. Because IPFS is in the early stages
of development, performance when adding many small files
to the IPFS network® consumes a large part of the time
required for indexing.

To evaluate the replay time, we fetched 600 sample URI-
Ms from each of pywb and ipwb independently, with both
using the same WARC basis for CDXJ generation, performed
prior to the replay procedure. The total time required for
pywb to access the sample URI-Rs using local WARC files for
lookup was 5.26 seconds. The same URI-Rs replayed in ipwb
with the same WARC records disseminated into the IPFS
system took 222 seconds. The increased latency is because
of how IPFS works, however, it provides infinite cacheability
and can benefit from CDNs. The latency is also because
of our naive implementation where we fetch the header and
payload sequentially rather than in parallel from the IPFS.
Additionally, IPFS promises greater persistence (which is
desired in archiving) with the cost of added latency. Figure 3a
shows the amount of disk space required to convert and
add compressed and uncompressed WARC content to IPFS.
With the tested data set where there is very little duplication
of HTTP response bodies because of URI-M uniqueness,
the slope of the uncompressed additions was 1.10 while the
slope of the compressed additions was 1.12. In practice,

Thttps://archive-it.org/collections/2438
Shttps://github.com/ipfs/go-ipfs/issues/1216

File compression
—=— Uncompressed
—e— Compressed (Gzipped)

1400
60

40 50
N !

Disk size in IPFS Store (MB)
30

200 400 600 800 1000
e A
IPFS Add Time (Minutes)

20
I

10
I

T T T T T T — T T
200 400 600 800 1000 1200 1400 5 10 15 20 25 30 35
Disk size in UNIX filesystem (MB) Number of Files (Thousands)

(a) Space cost (b) Time cost

Figure 3: IPFS storage space and time cost analysis

where duplication of response body content is much more
prevalent in a collection of WARCs, the file representative of
the response body of the duplicated content will not need to
be added to the IPFS, requiring only the file representative of
the unique HTTP header (Section 2) to be added. This would
result in a significantly smaller slope were the experiment
extended to a larger collection. Figure 3b shows that as more
files (extracted from the WARCs) are added to the IPFS
system, the time required to do so correlates linearly with the
number of files (not necessarily the size of the files for small
files) with a slope of 1.74 (on average, 570 files per minute).

4. FUTURE WORK AND CONCLUSIONS

Because of the novelty of IPFS, particularly relative to
web archiving, there are numerous applications to expand
this work. Collection builders can share their collections by
just exchanging the index while keeping the data in the IPFS
network and others can optionally replicate the data in their
storage for redundancy. Further considerations of access
control can also be addressed to encrypt and restrict content
based on privacy and security mechanisms. Another model of
IPFS-based archiving system can be built entirely using IPFS
and IPNS technologies without the need of external indexes.

In this work we developed a prototype to partition, dissem-
inate, and replay WARC file records in the InterPlanetary
File System (IPFS). Through experimentation on a 1.0 GB
data set containing 21,994 URI-Ms, we found that extracting
and indexing records from WARC files took 66.6 minutes
inclusive of dissemination into the IPFS system. The average
indexing rate inclusive of the data dissemination to IPFS
was 570 files per minute on average.

5. ACKNOWLEDGEMENTS

We would like to thank Ilya Kreymer for his feedback
during the development of the ipwb prototype and guidance
in interfacing with the pywb replay system. This work was
supported in part by NSF award 1624067 via the Archives
Unleashed Hackathon®, where we developed the prototype.

6. REFERENCES

[1] S. Alam, M. L. Nelson, H. Van de Sompel, L. Balakireva,
H. Shankar, and D. S. H. Rosenthal. Web Archive
Profiling Through CDX Summarization. In Proceedings
of TPDL ’15, pages 3-14.

[2] J. Benet. IPFS - Content Addressed, Version, P2P File
System. Technical Report arXiv:1407.3561, 2014.

[3] G. Mohr, M. Kimpton, M. Stack, and I. Ranitovic.
Introduction to Heritrix, an Archival Quality Web
Crawler. In Proceedings of IWAW ’04, September 2004.

[4] H. Van de Sompel, M. Nelson, and R. Sanderson. HTTP
Framework for Time-Based Access to Resource States —
Memento. IETF RFC 7089, December 2013.

http://archivesunleashed.ca

https://archive-it.org/collections/2438
https://github.com/ipfs/go-ipfs/issues/1216
http://archivesunleashed.ca

	Introduction
	Implementation
	Evaluation
	Future Work and Conclusions
	Acknowledgements
	References

