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When replaying an archived web page, or memento, the fundamental expectation is that the page should be
viewable and function exactly as it did at archival time. However, this expectation requires web archives upon
replay to modify the page and its embedded resources so that all resources and links reference the archive rather
than the original server. Although these modifications necessarily change the state of the representation, it is
understood that without them the replay of mementos from the archive would not be possible. The process of
replaying mementos and the modifications made to the representations by web archives varies between archives.
Because of this, there is no standard terminology for describing the replay and needed modifications. In this
paper, we propose terminology for describing the existing styles of replay and the modifications made on the part
of web archives to mementos to facilitate replay. Because of issues discovered with server-side only modifications,
we propose a general framework for the auto-generation of client-side rewriting libraries. Finally, we evaluate
the effectiveness of using a generated client-side rewriting library to augment the existing replay systems of web
archives by crawling mementos replayed from the Internet Archive’s Wayback Machine with and without the
generated client-side rewriter. By using the generated client-side rewriter, we were able to decrease the cumulative
number of requests blocked by the content security policy of the Wayback Machine for 577 mementos by 87.5%
and increased the cumulative number of requests made by 32.8%. We were also able to replay mementos that
were previously not replayable from the Internet Archive. Many of the client-side rewriting ideas described in this
work have been implemented into Wombat, a client-side URL rewriting system that is used by the Webrecorder,
Pywb, and Wayback Machine playback systems.

1 INTRODUCTION

Web archiving is gaining increasing prominence as reliance on the Web for information dissemination
and communication has increased. Web pages can be changed or may be removed, and web archives can
provide a record of what those web pages originally contained. Journalists and researchers have come to
rely on web archives for evidence used to hold public figures accountable [Frew 2022; Internet Archive
2022] and for studying disinformation campaigns [Weigle 2022]. Historians studying the recent past
have also come to understand the importance of web archives [Milligan 2019]. It is important, therefore,
especially for news and government-related web pages, to have an accurate record of what those pages
once contained. Along with capturing the content of web pages, it is also vitally important that the
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(a) Live CNN.com, August 13, 2019 (b) August 13, 2019 capture, re-
played from the Internet Archive,
2019-08-13

(c) September 21, 2016 capture, re-
played from the Internet Archive,
2016-09-21

Fig. 1. Screenshots of CNN.com taken August 13, 2019 - (a) live, (b) archived in 2019, and (c) archived in 2016

content in those archived pages is able to be faithfully replayed, allowing for the re-experiencing of the
web page at the time of capture.

The Internet Archive (IA),1 a non-profit digital library, was founded in 1996 with the mission of
“Universal Access to All Knowledge”, which includes crawling and preserving all public web sites. The
goal was not only to simply preserve the Web’s content, but to re-experience it through the Wayback
Machine,2 which allows users to replay archived web pages. In addition to IA, many other web archiving
initiatives3 have been created, many of which focus on archiving particular portions of the Web, whether
it be public government documents (e.g., the Library of Congress Web Archive4) or specific domains (e.g.,
UK Web Archive5). Although the Internet Archive was the first web archive and remains the largest,
there are more than a dozen publicly accessible web archives, and many more “dark archives” [Bailey
et al. 2013; Farrell et al. 2018; Gomes et al. 2011]. When aggregated, these other web archives can provide
coverage of web pages comparable to the Internet Archive [AlSum et al. 2013, 2014].

As web pages have become more complex, both the tasks of archiving and replaying web pages have
also become more complex. New strategies must be employed to preserve today’s Web [Crook 2009;
Masanès 2006; Nelson 2013b, 2020; Rosenthal 2012; Toyoda and Kitsuregawa 2012]. Take, for instance,
the issue of “unarchivable” web pages with the seeming disappearance of content from captures of CNN’s
main web page (www.cnn.com) right before the US Presidential Election of 2016 [Berlin 2017]. Figure 1
shows screenshots of a live CNN page from August 13, 2019, the archived version of that page as replayed
from the IA’s Wayback Machine in 2019, and an archived page from before November 2016 replayed in
2019. The primary issue is with the changes CNN made to their content delivery network (CDN) and
how the Wayback Machine replays the page’s JavaScript, which retrieves the page’s resources from the
CDN. The web page from 2019 (and those from November 2016 until Spring 2020) was in fact archived,
but the issue was that it was not replayable for an extended period of time. In this paper, we introduce a
technique for client-side modifications that allows this archived web page to be replayed.

Not all web archives use the same technology for capture or for replay. Replay can affect how users
perceive the quality of an archive in the same manner as capture does. Sometimes, if all of the resources
have been captured, broken replay can be fixed. But first, we must describe the ways in which various
archives perform replay. The web archiving community currently lacks the terminology to describe the

1https://archive.org/
2http://web.archive.org/web/20020806031346/http://www.archive.org:80/wayback/press_kit/press_release.html
3https://en.wikipedia.org/wiki/List_of_Web_archiving_initiatives
4https://www.loc.gov/programs/web-archiving/about-this-program/
5https://www.webarchive.org.uk
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existing styles of replay and the modifications made to an archived web page and its embedded resources
to facilitate replay. This paper aims to address this issue and makes the following contributions:

• Provides a classification of and terminology for the current styles of replay
• Proposes a standard and generalized method for the generation of client-side rewriting libraries
• Details a combination server-side and client-side rewriting technique that decreases the number of

modifications made to archived JavaScript and provides an archive with more control over replay
• Evaluates the effectiveness that client-side rewriting would have in augmenting already existing

server-side rewriting systems of an archive

This paper is based on Berlin’s 2018 Masters thesis [Berlin 2018], which provides full details of this
work. In August 2017, both the Webrecorder and Pywb playback systems adopted the client-side rewriting
methods described in this work.6 Pywb’s client-side rewriter was then split out into the Wombat client-side
URL rewriting system [Kreymer 2019] in 2019. Wombat is an essential part of many web archive replay
systems, including the Internet Archive’s Wayback Machine. Further, in the Spring of 2020, because of
Berlin’s work, the Internet Archive updated their Wayback Machine to resolve the CNN replay issue
described above.7

We have organized this overview of the issues and approaches for client-side rewriting as follows. Section
2 covers background on the Memento protocol and archiving and replay of web pages. Section 3 discusses
related research on archiving and replaying dynamic content and related security issues for web archives.
Section 4 describes the current methods of web archive replay, including URI rewriting and further
modifications necessary for archive replay, and introduces our terminology for the different styles of web
page replay. Section 5 presents our approach for client-side re-writing to overcome some of the replay
issues discussed. Section 6 presents an evaluation of our approach. Finally, Section 7 offers a conclusion
and thoughts on future work.

2 BACKGROUND

2.1 Memento Framework

The Memento Framework [Van de Sompel et al. 2013, 2009] defines inter-archive coordination and
provides succinct terminology for referring to archived resources. Each resource on the web is identified
by a URI; when referring to URIs using the Memento framework’s terminology, it is a URI-R. A URI-R
“is used to denote the URI of an Original Resource,” a URI-M “is used to denote the URI of a Memento,”
and a memento represents “an Original Resource as it existed at time T” [Van de Sompel et al. 2013].
The time T is referred to as the Memento-Datetime.

A TimeGate (URI-G) is a resource that will select (negotiate) the closest URI-M for a URI-R based on
the datetime supplied in the accept-datetime HTTP header. A TimeMap (URI-T) for a URI-R contains a
listing of the URI-Ms that an archive has in a machine readable format. The TimeGate utilizes these
listings to look up the closest datetime of the URI-Ms an archive contains for a particular URI-R. The
relationships between mementos, TimeMaps, and the TimeGate are important as they provide a basis for
this work, which is focused on replaying (viewing) mementos of an archived web page using a browser.

When an archived web page is replayed in the browser, the browser must dereference the page and any
embedded resources within the page. Since the web page is archived, any embedded resources should be
loaded from the archive (using URI-Ms) instead of the live web (using URI-Rs). This results in a composite
memento, which is “a root URI-M and all embedded URI-Ms required to recompose the presentation at

6https://github.com/Rhizome-Conifer/conifer/commit/12e2b507b88c4f0c00f29589436f7385dc512f9a (In 2020, We-
brecorder was renamed to Conifer.)

7https://twitter.com/phonedude_mln/status/1270759972553527297
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the clients” [Ainsworth et al. 2014]. In other words, a composite memento encompasses the state and
composition of a web page as it potentially existed at preservation time when accessed by the browser.

2.2 Web Page Structure

The Hyper Text Markup Language (HTML) [WHATWG Working Group 2022] is the most popular
document type for representing web pages, but HTML only conveys the structure of the web page, relying
on a third party to render its content. Each web page contains many HTML elements (tags) in any order
that the author of the page desires, but there are three main structural elements. At the root of a HTML
document is the HTML tag that can have two children, the head and body elements. The head element
can contain elements for defining metadata about the document as well as elements for linking to external
resources for the document via the link tag and/or embedding JavaScript via the script tag. The body
element contains the primary contents of the HTML document and can contain many HTML elements
or text in any order its creator desires. Web page creators can embed images in the document via the
image (img) tag, video via the video tag, or provide navigation to another web page or another section
in the document via the anchor (a) tag. Other content can be embedded in the document include other
documents via the iframe tag or additional JavaScript via the script tag.

2.3 Archiving and Replay of Web Pages in the Internet Archive

The Internet Archive primarily uses Heritrix for its archival crawler [Mohr et al. 2004], although browser-
based crawling is becoming more frequent via their “Save Page Now” interface [Graham 2019]. Heritrix
extracts all the URI-Rs contained within a web page [Stern 2011] but without rendering the page or
executing the page’s JavaScript. Heritrix saves HTTP responses in Web ARChive (WARC) files [ISO
28500 2009], which stores the HTTP requests and corresponding responses during crawling. When
indexed by the Wayback Machine or similar tools (e.g., OpenWayback [International Internet Preservation
Consortium (IIPC) 2015], PyWb [Kreymer 2013], ReplayWeb.page [Kreymer 2020]), the WARC files
allow for replay of composite mementos at the time of their capture. It is the job of the replay software
to transform the resources to better emulate the past, such as adding branding and navigational banners
and rewriting links so they point back into the web archive and not to the live Web.

The Internet Archive’s Wayback Machine [Fox 2001; Tofel 2007], which is compliant [Internet Archive
Developer Portal [n. d.]] with the Memento Framework, is a combination front-end user interface to
the contents of the archive and replay engine for viewing its archived web pages. The main page of the
Wayback Machine (Figure 2a) allows users to enter a URI-R of a web page to see if it is contained in the
archive or select one of the promoted web pages to view. When a user enters a URI-R to view, they are
taken to a calendar view (Figure 2b) that displays the date of each memento for the selected year. The
user can then select a memento to view (Figure 2c).

2.4 The Broader Web Archiving Ecosystem

The Internet Archive began operation of its web archive in 1996 [Kahle 2021]. For many years, it was the
only public web archive; the next public web archive, WebCite did not arrive until 2005 and featured the
innovation of archiving pages submitted by users [Eysenbach and Trudel 2005]. While WebCite is no
longer operational [Aturban et al. 2021], there are many different public web archives in operation [Bailey
et al. 2013; Farrell et al. 2018; Gomes et al. 2011]. The International Internet Preservation Consortium
(IIPC)8 is a global coordinating agency where many of the public web archives are represented.

8https://netpreserve.org/
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(a) Main page http://web.archive.
org

(b) Datetime selection http://we
b.archive.org/web/2017*/http:
//www.nocleansinging.com/

(c) Replay view http://web.archiv
e.org/web/20171005045751/http:
//www.nocleansinging.com/

Fig. 2. Screenshots of the Internet Archive’s Wayback Machine

Web archives have gained societal acceptance [Major and Gomes 2021] and are commonly used to
adjudicate matters of law [Eltgrowth 2009; Quarles III and Crudo 2014; Zittrain et al. 2014] and journalism
[Boss et al. 2019; Forde et al. 2023; Kriesberg and Acker 2022]. The first scholarly description of web
archiving appeared in 2006 [Masanès 2006], and other comprehensive reviews of methods, evaluation,
and applications have since appeared [Brügger 2011; Brügger and Milligan 2018; Gomes et al. 2021].
Web archives have long been difficult to use, but on that front a number of computational exploratory
environments have been developed to ease that burden, including ArchiveSpark [Holzmann et al. 2016],
Archives Unleashed [Ruest et al. 2020], ARCH [Holzmann et al. 2022], and the GLAM-Workbench
[Sherratt and Jackson 2020].

The broader acceptance and social impact of web archives, as well as the expanding code base to
support their exploration are all welcome developments. However, they do force us to reconsider the
fidelity of replayed web pages: if the use case of web archives is no longer limited to novelty of exploring,
for example, past GeoCities sites [Lin et al. 2020], and now includes significant legal and financial
implications, we must reconsider our approach to how JavaScript is handled on replay. There are simply
too many fidelity and security concerns under the current approach; we cannot have sites like cnn.com
unable to replay for four years.

3 RELATED WORK

This section discusses previous work that has addressed the dynamic nature of the web and/or identified
the effects of un-archived resources during replay. There is a trade-off between how web archives should
handle JavaScript and the dominant model in most web archives, inherited by the original design of the
Internet Archive’s Wayback Machine: preserve the JavaScript and at replay time send it back with only
its URLs rewritten but otherwise with the same functionality and execution as the JavaScript originally
contained on the live Web. This model, described in detail as Wayback Style in Section 4, has implications
for the performance, completeness, and security of replayed web pages.

ACM Trans. Web
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3.1 Evaluating Archival Performance

The Archival Acid Test (AAT) [Kelly et al. 2014] is a test suite for evaluating the ability of archival
crawlers and replay systems to handle dynamic content. It consists of three categories to test specific
aspects of how well an archival crawler can preserve both dynamic and non-dynamic web content. The
first category determined a crawler’s ability to identify and handle URI variations such as relative
(someFile.ext) or scheme-less URIs (//server.com) [Berners-Lee et al. 2005; Nottingham 2014]. The
second category examined how well the archival crawler could extract URIs from JavaScript files that
were used to bring in additional resources when executed by the browser viewing the test page. The final
category tested a crawler’s ability to know where to look for URIs used in more complex JavaScript and
HTML interactions other than simple DOM manipulation. Most archival crawlers and replay systems
tested by Kelly et al. properly handled the first category of tests, but only a few comprehensively handled
the majority of the tests. Brunelle et al. [Brunelle et al. 2016] conducted a study of 1,861 URIs with
mementos in the Internet Archive between 2005 to 2012 to identify the impact that JavaScript has on
the archivability of web pages. The authors found that JavaScript was responsible for 52.7% of all missing
resources, and that by 2012, JavaScript was responsible for 33.2% more missing resources than in 2005.
Brunelle et al. also observed that JavaScript was used to load 33.7% of all embedded resources in the
mementos studied. These findings echoed an earlier study from 2013 [Kelly et al. 2013] that showed that
the loss of archived resources increased as JavaScript usage increased over time.

Nearly concurrent with the AAT, Banos & Manolopoulos [Banos and Manolopoulos 2016] created
an implementation to evaluate the archivability of live web sites by identifying the facets of the pages,
such as their respective accessibility, metadata, and standards compliance. Their approach provided an
interactive web site that allows users to enter a URL to evaluate the potential for a URI-R to be archived
completely and accurately.

Web archives do not or cannot preserve every resource for every page they archive [Brunelle et al. 2016;
Kelly et al. 2013; Leetaru 2015, 2017]. Due to this fact, archived web pages that are missing a portion of
their embedded resources appear damaged when replayed. Brunelle, Kelly et al. [Brunelle et al. 2014,
2015] looked at the proportion of missing resources for mementos to assess their damage, finding that the
users’ perception of damage is a more accurate metric for judging archival quality than the proportion of
missing resources. This is an important finding because, depending on how damaged a memento is when
replayed, the appearance of missing resources may cause one to believe that the archive has tampered
with the memento in some way.

Reyes Ayala [Reyes Ayala 2022] took a grounded theory approach toward evaluating the quality of
web archives as they appear in correspondence to their live Web counterparts, relevance of an archived
page to its basis, and the qualities of a page that affect its archivability. The work mainly focused on the
correspondence aspect with an emphasis on various effects of JavaScript as they are perceived by the
user viewing a memento.

The Memento Tracer framework [Klein et al. 2019] extends on some of the work in the process of
automating archiving of dynamic web content. While contemporary efforts to preserve dynamic content
has improved beyond the crawler capability in the Archival Acid Test [Kelly et al. 2014], the ability
to perform high-fidelity captures was either a manual process or did not computationally scale due to
the overhead of improving archival quality. Tracer provides both an abstracted method for performing
dynamic operations as well as a means of evaluating archival quality.

ACM Trans. Web
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3.2 Handling The Replay Of Dynamic Content

Current strategies for handling replay of dynamic content rely on client-side intervention either indirectly
or directly. The indirect strategy as described by Alam et al. [Alam et al. 2017] involves the usage of
a ServiceWorker. The ServiceWorker added by the archive is essentially an added embedded resource
for the page capable of intercepting the HTTP requests made by the currently replayed page. This
capability of ServiceWorkers allows them to be utilized by the archive to rewrite any URI-R that was
either missed by the archive’s initial URL rewriting or that was dynamically generated by archived
JavaScript to point to the live Web rather than the archive. The direct approach utilizes the client-side
archival rewriting JavaScript library Wombat9. Wombat is utilized by Pywb and Webrecorder10 to
override the JavaScript APIs of the browser to rewrite any unwritten URI-Rs into URI-Ms. Wombat
includes a full URL rewriting system that utilizes overrides of the JavaScript Web and DOM APIs to
rewrite any URIs that were missed during the server-side rewriting process. Even though usage of these
strategies does not necessarily guarantee a decrease in the proportion of missing resources to non-missing
resources of a replayed memento, these strategies seek to increase the viewer’s perception of archival
quality.

3.3 Security and The Archive

A result of the dominant Wayback Machine replay model is that JavaScript is archived and replayed
in the browser, with modifications limited to rewriting URLs so they point back into the web archive
and not to the live Web. This preserves JavaScript UI functionality, but comes at the cost of potentially
replaying web pages that never existed, as well as introducing security vulnerabilities.

The first documented example of unarchived resources altering the validity of an archived page was the
“leakage” of live Web resources into the replay of mementos, termed “zombies in the archive” [Brunelle
2012; Nelson 2014]. The term “zombies” is used to refer to live Web resources that leak into replay, in
that mementos are considered “dead”, whereas live Web resources are “alive”. As discussed in Section 3.1,
the primary cause of live leaking “zombie” resources in the archive is JavaScript. URI-Rs dynamically
created by JavaScript were not rewritten to point back into the archive, and instead pointed to the live
Web. When replaying a memento containing zombies, the zombie resources may give the false appearance
that the archive has tampered or altered the memento or its embedded resources.

Combining resources from the live Web and the archived Web can be construed as problem of temporal
coherence. Ainsworth et al. [Ainsworth et al. 2014, 2015] examined this problem further, looking at
the temporal coherence of composite mementos even when all resources are from the archived Web.
Temporal incoherence may make it appear as if the archive had maliciously modified the memento or its
embedded resources. Ainsworth et al. defined five states of temporal coherence. The first state, called
Prima Facie Coherent, represents when an embedded memento exists in the archive as it does on the
live Web. The second, called Prima Facie Violative, represents when an embedded memento does not
exist in the archive as it did on the live Web. The third, called Possibly Coherent, represents when an
embedded memento might have existed in the archive as it does on the live Web. The fourth, called
Probably Violative, represents an embedded memento that likely did not exist as archived in comparison
to the root memento. The final state, Coherence Undefined, is used to denote when there is not enough
information to accurately determine the memento’s coherence state.

Where early work considered zombies and temporal coherence as simply a problem in crawling in replay,
Lerner et al. [Lerner et al. 2017] was one of the first to realize that these were security vulnerabilities that

9https://github.com/ikreymer/pywb/blob/master/pywb/static/wombat.js
10https://webrecorder.io/
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could be turned against the web archive itself by writing JavaScript specifically designed to exploit these
vulnerabilities. They described three attacks perpetrated by users of the web archive. The first attack,
called Archive-Escapes, highlighted how the URL rewriting performed by the archive does not necessarily
rewrite URLs generated by JavaScript; this could be exploited to bring in zombies from the live Web.
The second, called Same-Origin Escapes, describes how embedded resources normally disallowed from
interacting with the embedding page because they come from another origin than the page can interact
with the embedding page because the content is replayed from a single origin (the archive). The final
attack, Never-Archived Resources and Nearest-Neighbor Timestamp Matching, describes how the archive’s
inability to archive or rewrite dynamically-added resources could be exploited by identifying an archived
page with missing resources that come from a domain that is unowned. Through purchasing said domain,
the attacker would cause the archive to replace those missing resources with their own. The solutions
posed by Lerner et al., namely archival modification of JavaScript at replay time and the separation
of replayed content from the archive’s presentational components of replay, parallel the existing replay
strategies employed by Webrecorder11 and Perma.cc [Kreymer 2020].

Roughly simultaneously with Lerner et al., Cushman & Kreymer enumerated similar threats against
web archives [Cushman 2017; Cushman and Kreymer 2017; Rosenthal 2017], though their terminology
and granularity varied slightly. They also described mitigation strategies for these attacks, some of which
has influenced the design and implementation of other public web archives, such as Perma.cc [Zittrain
et al. 2014].

Watanabe et al. [Watanabe et al. 2020] generalized the work of Lerner et al. and Cushman & Kreymer
to be inclusive of any sites that re-host content, including web archives, language translators (e.g., Google
Translate), and privacy proxies (e.g., ProxySite). These re-hosting sites are susceptible to attacks on a
client viewing the site in a manner that may not have existed on the basis site. The typical mechanisms
of security that prevent JavaScript-driven interaction, like cross-origin resource sharing (CORS) [van
Kesteren 2020], are not applicable when pages from different sites are simultaneously hosted on the
same re-hosting site. The restructuring of multiple sites (e.g., URI-Rs) being re-hosted at one site (e.g.,
archive.org) produced the “melting pot” effect. This effect allowed interaction of archived sites that would
have previously been hosted at different domains and thus had the same origin policy (SOP) in place.

Breaking from the Wayback Machine model of simply replaying JavaScript, an alternative approach for
JavaScript was proposed by Goel et al. [Goel et al. 2022], where they focus on identifying and eliminating
JavaScript that will not work correctly (e.g., handing writes back to the server) or will not be executed
during replay (e.g., handling a server push that will never come). Their goal is primarily about optimizing
the crawling, storage, and replay requirements for archived web pages, but it does represent a break from
the approach of most web archives in attempting to modify JavaScript for performant replay.

The JavaScript strategy that is the most divergent from the Wayback Machine is the Archive.today
web archive [Nelson 2013a], which strips out all JavaScript from its storage and replay, saving only
the resulting DOM and not the original HTML and JavaScript. This approach eliminates all security
vulnerabilities associated with replaying JavaScript, but comes at the cost of losing UI functionality often
implemented with JavaScript (e.g., navigation, pan, zoom).

4 STYLES OF WEB ARCHIVE REPLAY

Because of the prevalence and longevity of the Internet Archive’s Wayback Machine, we first categorize
the styles of web archive replay into Wayback style and Non-Wayback style. In Wayback style archiving

11Since conducting the study described in this paper, the service at webrecorder.io has been renamed “Conifer” while the
efforts toward maintaining the software retain the “Webrecorder” name.
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Fig. 3. Illustrating the various styles of replay

and replay, all of the resources of a web page are captured and stored in WARC files, as described in
Section 2.3. Based on the method of replay, the resources in the appropriate WARC files are accessed,
modified, and rendered in the viewer’s web browser. Figure 3 illustrates our categorization of replay
styles, which are detailed in this section.

Archives using the Wayback model must perform certain modifications on the original resource to
facilitate proper replay of the archived web page. These modifications may include Archival Linkage
modifications (Section 4.1.1) and Replay-Preserving modifications (Section 4.1.2). Archival Linkage
modifications are made to the URI-Rs found in a memento and its embedded resources so that they no
longer link to the live Web but back to the archive. Similarly, archives must perform Replay-Preserving
modifications to negate intended semantics of specific HTML element and attribute pairs to ensure that
replay of the memento is possible.

In addition to modifications of the archived resources, there can also be a difference in how replay
systems present the replayed memento in the archive’s web page. This can be done through Sandboxed
Replay, where the replayed archived resources are separated from the archive’s user interface using an
iframe, or through Integrated Replay, where the web archive’s user interface is inserted into the web
page of the replayed memento.

The main Non-Wayback model replay styles are Essence Preservation (Section 4.2.1) and Archival
Caricaturization (Section 4.2.2). Essence Preservation focuses on capturing only what the web
page looked like at archival time, and the result of preservation is an image, PDF, or video. Archival
Caricaturization, an extension of essence preservation, applies a transformation to the page and its
embedded resources during preservation such that the archived representation is radically different from
the original representation.

4.1 Wayback Style Replay

In this section, we discuss the major modifications applied in Wayback style replay, namely Archival
Linkage modifications and Replay-Preserving modifications. We will also discuss the differences between
replay systems that employ Sandboxing and those, such as the IA’s Wayback Machine, that do not.

4.1.1 Archival Linkage Modifications. To facilitate the replay of mementos, archives must modify (rewrite)
the URI-Rs contained in the page and its embedded resources so that they no longer reference (link
to) the live Web from where they were archived, but back to the archive. If not for URI rewriting, the
embedded resources of an archived web page would continue to reference the live Web, resulting in live
Web leakage or “zombies in the archive” (Section 3.3). We define the modifications made by the archive
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to a page and its embedded resources (including JavaScript and CSS) for replay from the archive as
archival linkage modifications. This section will describe the methodology used by OpenWayback,12 the
open source implementation of the Wayback Machine, and Pywb.13 Both OpenWayback and Pywb are
derived from the original closed source implementation used by the Internet Archive.

HTML. In HTML, URI-Rs may exist in the markup as the text content or as an attribute value for an
element. URI-Rs that are a part of an element’s text content do not necessarily need to be rewritten as
they are not typically used for any other purpose than to be displayed. Conversely, when used as the
value of an element attribute, they are used to provide functionality for the page based on the element or
attribute semantics [WHATWG Working Group 2022].

The href and src attributes are associated with the more commonly used HTML elements. The src
attribute is used to embed an external resource into the current page based on the tag’s semantics. For
instance, the script tag is associated with embedding JavaScript into a page either by including the
JavaScript code as the text contents of the tag or by making the browser fetch the code using the URI-R
supplied as the value for its src attribute.

The href attribute has three purposes based on the semantics of the enclosing tag. The first purpose
is to provide navigable links within the document’s text through an a tag. Rewriting the value of the
href attribute for these tags allows the viewer of the archived page to stay within the archive when
moving between pages rather than going to the live Web. The second purpose for the href attribute
defines a “base” URI by which all other relative values of the src or href attribute are relative URIs to
be resolved. Rewriting the tag allows the archive to skip rewriting of any relative URI-Rs that come
after the tag, because the browser will resolve the un-rewritten relative URIs using the re-written one
provided by the base tag’s href attribute. The third and final purpose of the href attribute is used by
the link tag to specify a relationship between the current page and an external resource as defined by an
additional attribute. The rel attribute of the link tag indicates how to interpret the link (href ) that this
tag is making to another resource. Modifications of the link tag’s href are only necessary for rel types
stylesheet, prefetch, preload, icon, dns-prefetch, manifest, and import because they initiate a
browser fetch, where the other rel types do not [Grigorik 2018].

JavaScript. JavaScript is a dynamic, interpreted programming language that requires execution to
determine the ultimate result of the values on which the code operates or produces [Harband et al. 2021].
This requires archives to carefully consider the context in which an URI-R may appear in the JavaScript
code along with the how and where it may be retrieved by the archived JavaScript. Figure 4 shows two
examples where it is possible for an archive to rewrite URI-Rs (lines 2 and 4) and three examples of
when it is impossible to do so (lines 7, 9-12, and 14-20). The examples that are rewritable do not involve
any dynamically computed parts, whereas those that are not rewritable involve dynamically computed
values, which are not easily discoverable. The un-rewritable nature of dynamically computed URI-Rs,
especially those shown in Figure 4, shows that JavaScript is syntax and interpretation dependent. In line
11, humans can tell by inspection that n.src is associated with the JavaScript DOM API for the script
tag created within the function, but it could have been the src attribute of some object not associated
with a DOM element.

Cascading Style Sheets (CSS). The final component of archival linkage modifications is modification
made to CSS, the language for controlling presentation in HTML documents [W3C 2022]. These changes
are trivial in comparison to the linkage modifications made to HTML or JavaScript, as URI-Rs can exist

12https://github.com/iipc/openwayback
13https://github.com/ikreymer/pywb
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Fig. 4. JavaScript code showing two examples (lines 2, 4) of rewriteable URI-Rs and three examples (lines 7, 9-12,
14-20) that cannot be rewritten without executing the JavaScript code.

in CSS in only two ways (Figure 5): by using the @import keyword followed by the name of the style
resource to be imported, or by using the url keyword. In either case, these URI-Rs are easily identifiable
and thus rewritable.

URI Rewriters. To rewrite URIs, archives rely on configurations that list the components of archived
resources that might contain URI-Rs that need to be rewritten. The standard attribute rewriter of
OpenWayback is used to rewrite the URI-Rs contained in HTML element attributes as URI-Ms. The
standard attribute rewriter targets HTML elements that contain src and href attributes.

Consider the following link tag:

<link rel="stylesheet" href="/css/style.css">

OpenWayback’s standard attribute configuration file’s entry for the rewriting the link tag’s href for
stylesheets is

LINK[REL=STYLESHEET].HREF.type=cs

Notice that the entry does not explicitly define how the URI-R should be rewritten. Rather, the entry
defines a modifier to be added (cs) alongside the archival time of the replayed memento. The modifier
acts as a hint for the archive to indicate the specific rule-based rewriter to handle the rewriting of the
resource. Assuming the datetime of the memento was 20171007035807 and that this should be used in
forming the URI-M, the link tag would be rewritten as

<link rel="stylesheet" href="/20171007035807cs_/css/style.css">

Rule-based rewriters, as the name implies, rely on rules to perform the actual rewriting. These rules are
derived from the rewrite modifiers added to the URI-Rs by the attribute rewriter and regular expressions.
The Pywb stylesheet rewriter defines two rules in the form of regular expressions (CSS_URL_REGEX and
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Fig. 5. URIs in CSS files, specified with the @import and url() keywords

CSS_IMPORT_NO_URL_REGEX) that cover the different combinations in which URIs can exist in CSS files,
examples of which are shown in Figure 5. The regular expressions used by each rewriter must be applied
to each line of the file they are rewriting. When one of the rules matches the current line of the file being
rewritten, the rule is applied and the rewriter moves on to the next line. If none of the rules match the
current line, the rewriter will move on to the next line until one of its rules matches or the rewriter
reaches the end of file. This is the totality of the URI rewriting process and is the typical manner that
Wayback Machine implementations rewrite the URI-Rs to URI-Ms.14

4.1.2 Replay-Preserving Modifications. Replay-preserving modifications are modifications made on the
part of an archive to negate the intended semantics of specific HTML element and attribute pairs that
would cause the browser to navigate away from the URI-M, apply a security policy not originating from
the archive, or to embed a hash of the original representation for resources loaded by the script and
link tags.

The first of these modifications is the negation of meta tags that alter the URI-M of the currently
replayed page and refreshes the browser, causing navigation to the altered URI-M [Nelson 2014]. For
example, the meta refresh tag

<meta http-equiv="refresh" content="35; url=?refresher=666">

defines in the content attribute a wait time of 35 seconds before the browser will refresh the page,
appending ?refresher=666 to the current URI, thus creating a new URI. When a browser refresh occurs
and the URI has changed, this causes navigation to the new URI, which is not desired when viewing the
page in the archive. To mitigate the behavior of the meta refresh tag, archives can choose to either prefix
the http-equiv and content attributes with an underscore or remove the contents of those attributes.

The second undesired usage of the meta tag in replay is to define a Content Security Policy (CSP)
without using HTTP headers. Content security policies are used as a defense against malicious content
injection (e.g., cross-site scripting) by defining the origins allowed to be loaded on a given page and are
typically delivered in HTTP headers of the response [West et al. 2016] for the page to which it should
be applied. The Internet Archive, as a direct response to the paper by Lerner et al. [Lerner et al. 2017],
now applies their own CSP during replay. CSPs delivered via HTTP are a non-issue for replay, as the
original HTTP headers are prefixed by the archive using the convention “X-Archive-Orig” when serving
the response on replay [Ainsworth 2015]. The issue arises when meta tags are used to define one or
more policies for a page. Policies delivered using the meta tag are additive to any CSP delivered in the
HTTP response for the page. The meta tag in Figure 6 defines a policy to restrict resource origins to
http://mydomain.com only. When archived and replayed, the policy would make the browser refuse to
load the embedded resources of both the archive (if any are present) and the archived pages because their
replay origin is the archive, not the one listed in the policy. The only possible mitigation is to change the
attributes or values of the tag such that the browser’s tag and attribute resolution algorithm does not
match, or to remove the tag completely.

14Non-Wayback Machine archives may do the rewriting differently or not at all (e.g., cached pages in search engines and
historical MediaWiki pages).
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<meta http-equiv="Content-Security-Policy" content="default-src
http://mydomain.com; connect-src http://mydomain.com; frame-src
http://mydomain.com; img-src http://mydomain.com; media-src
http://mydomain.com; object-src http://mydomain.com; script-src
http://mydomain.com; style-src http://mydomain.com; font-src data:
http://mydomain.com; worker-src http://mydomain.com;">

↪→

↪→

↪→

↪→

↪→

Fig. 6. Content Security Policy defined in a meta tag

<link rel="stylesheet" href="theStyleSheet.css" integrity="sha384-eKdwSs2g6PL !

+F9/RnQ14sov7h5SAFYgq8WJln2tXHOSW/7fJt4G+Td7PcVzkJunk">↪→

<script src="theScript.js"
integrity="sha256-qerliYS7q6jrFLa4BJJ3g1ua00vkPz9SjuYsHPLpVzE="></script>↪→

Fig. 7. Integrity attribute of the script and link tags

Similar to the CSP defined in a meta tag, which can prevent the browser from loading all embedded
resources that do not originate from the specified origin, an integrity attribute can be used to prevent
the browser from loading the resources of the link and script tag. The integrity attribute of the link
and script tags shown in Figure 7 consists of a hash used to validate the hash computed by the browser
upon receiving the response body of the resource [Weinberger et al. 2016]. If the browser-computed hash
matches the one provided with these tags, then the resource will be loaded otherwise it will not. Due
to archives modifying the original resource contents (as described earlier), the hashes will not match
and thus, the browser will not load the resource and replay will be affected. Again, the only option to
overcome this is to change the attributes such that they do not match the browser attribute resolution
algorithm or to remove the attribute.

4.1.3 Sandboxed Replay. As shown in Figure 3, we have further characterized Wayback style replay into
Sandboxed Replay and Integrated Replay. Sandboxed replay separates the replayed page from
the archive-controlled portion of the page through isolation. The term sandboxed in the case of replay
is similar to the architectural design of the Chromium browser [Barth et al. 2008; Reis et al. 2009],
which separates the browser kernel (e.g., network and file system stacks) from the rendering engine (e.g.,
HTML and CSS parsing, image decoding, JavaScript engine). This is a direct reflection of the base
assumption that the rendering engine is always compromised [Barth et al. 2008]. Archives and replay
systems that employ sandboxed replay share this assumption, i.e., that the pages being replayed are
always compromised. There are three main methods by which archives and replay systems typically
implement sandboxed replay, though not all use all three methods. Replay isolation uses iframes to
separate the archive-controlled content from the replayed content. Temporal jailing attempts to override
certain JavaScript commands to prevent the archived page from navigating to the live web. This requires
the use of client-side rewriting.

Replay Isolation. Archives and replay systems that employ sandboxed replay, namely Webrecorder and
Pywb, do so through Replay Isolation. Replay isolation involves the usage of an iframe as the sandbox
to bring in the actual page being replayed from another domain. This can be seen when considering
the memento of 2016.makemepulse.com on 2017-06-30T21:54:24 when replayed from Webrecorder15

15https://webrecorder.io/jberlin/beautify-js-sites/20170630215424/http://2016.makemepulse.com/
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Fig. 8. Example of replay isolation’s sandbox on a page replayed by webrecorder.io. The sandboxed portion is outlined
in red.

(Figure 8). The two green boxes in Figure 8 represent the non-replay, archive-added portion of replaying
web pages, whereas the red box represents the actual replayed page. The top green box highlights the
presentation portion of replaying web pages on Webrecorder (i.e., a navbar), whereas the bottom green
box highlights additional elements used in conjunction with the navbar. These elements are on the origin
https://webrecorder.io, and the actual memento being replayed is embedded using an iframe from
https://wbrc.io. Because iframes bring in what is essentially another browser window into the current
one, they have their own security restrictions used by the archive to achieve replay isolation. When
the embedded page is from a different origin [WHATWG Working Group 2022] than the embedding
page, the content brought in has limited access to the embedding page and vice versa. Much like how
the Chromium browser isolates its renderer from the browser kernel, sandboxed replay and replay
isolation ensure the separability of archive-controlled presentational components of replay from the
potentially, non-archived controlled replayed page.

Temporal Jailing. Even though an archive may employ replay isolation, the archived JavaScript
of the replayed page still has the ability to reach out to the live Web [Cushman and Kreymer 2017;
Lerner et al. 2017], escaping the sandbox and causing loss of control over replay on the part of the
archive. Because of this, an archive using sandboxed replay may go a step beyond URI rewriting
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and replay isolation through temporal jailing, which is the emulation of the JavaScript envi-
ronment as it existed at the original Memento-Datetime. This can be accomplished through archive
navigational control over the page and client-side rewriting. To achieve archive navigational control, cer-
tain JavaScript APIs (namely document.location, window.open, document.domain, window.location,
window.history, and location) are overridden by the archive and can no longer navigate the browser
away from the archive, open a new window to an unarchived page, or cause a run time error when
attempting to change the domain of the page [Berlin 2017]. Rather, when a navigation or history change
happens, those events would be reflected in both the replayed page and the archived-controlled portion of
sandboxed replay. To accomplish this, any URIs used to cause navigation must be rewritten as URI-Ms,
using client-side rewriting.

Client-side Rewriting. Client-side rewriting directly overrides JavaScript web and DOM APIs [WHATWG
Working Group 2017a,b, 2022] to provide URI rewrites at the client side. By moving the rewriting
client-side, archives ensure that dynamic content added or requested by JavaScript is rewritten. This
is essential for providing temporal jailing. We discuss this in more detail in Section 5 by showing how
client-side rewriting improves the replay fidelity of mementos replayed from the Internet Archive.

4.1.4 Integrated Replay. Integrated replay is the style of replay that does not separate the replayed
memento from the archive-controlled portion of replay. Unlike sandboxed replay, the contents of the
replayed memento and the portion added by the archive for replay exist side by side and come from
the same domain. Control over the replayed memento is achieved through archival linkage modifications
only. To demonstrate this, consider a memento of the same page used to illustrate sandboxed replay,
http://2016.makemepulse.com/ on 2017-10-22T01:59:01Z, when replayed from the Internet Archive.
Figure 9 displays how the Internet Archive is inserting its own markup (green boxes) into the HTML
belonging to the replayed memento (red box). The markup inserted in the HTML of the replayed memento
exists only to provide the banner seen in Figure 10b (green box), which is displayed over the contents of the
replayed memento (red box). This can be seen in contrast to the same memento replayed in the sandboxed
webrecorder.io (Figure 10a), where the archive navigation bar is shown separate from the replayed
content. The top frame in integrated replay acts as both the frame containing the archived-added portion
of replay and the frame where replay actually occurs. The archived-added portion (green boxes) are not
isolated from the replayed memento (red boxes). This leaves the archive-injected markup vulnerable to
either direct or indirect tampering by the replayed memento simply because they exist in the same frame
(origin), web.archive.org.

4.2 Non-Wayback Style Replay

As mentioned earlier, the two main forms of Non-Wayback Style replay are essence preservation and
archival caricaturization.

4.2.1 Essence Preservation. Essence Preservation preserves only what the web page looked like at
preservation time. This preservation process typically results in an image, PDF, or video [Nelson 2013b]
of the web page being created. The news homepage archiving platform, PastPages,16 demonstrates this
(Figure 11). PastPages was created by Ben Welsh, editor of the Los Angeles Times Data Desk, to take
screenshots of the home pages for 121 news sites once an hour so that the changes they undergo can be
studied. The original contents of those homepages (e.g., HTML and embedded resources) are unavailable
in this archive. The images saved by this service only prove that the home pages for 121 news sites did in

16http://www.pastpages.org the project ended in 2018 and now resides at https://archive.org/details/pastpages.
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Fig. 9. Example of integrated replay. The replayed page’s contents are outlined in red. https://web.archive.org/web/
20171022015901/http://2016.makemepulse.com/

fact exist and that what was captured in the screenshot was displayed to the tool or entity that took the
screenshot, i.e., their essence.

4.2.2 Archival Caricaturization. Archival Caricaturization is a style of preservation that does not preserve
the web page as it originally was at some point of time, but rather focuses on only preserving what it
looked like at some point of time. Caricature is defined as “exaggeration by means of often ludicrous
distortion of parts or characteristics”17 and is the pivotal distinction for this style of preservation. An
archive that preserves through caricature is one that applies a derivative transformation to the web
page’s original markup such that it conforms with the presentational style of the archive but the source
is unrecognizable from the original. An archive may choose to keep the original appearance of the web
page at the point in time it was preserved or may choose only to preserve certain aspects of the web page
like its text, images, and/or video, presenting them in a medium differing from the original. Ultimately,

17https://www.merriam-webster.com/dictionary/caricature
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(a) Sandboxed replay at webrecorder.io (b) Integrated replay at the Internet Archive

Fig. 10. Examples of the same memento replayed using (a) sandboxed replay at webrecorder.io and (b) integrated
replay at the Internet Archive. In both images, the archive portions are outlined in green and the replayed portions are
outlined in red.

one cannot retrieve the original web page and its embedded resources at archival time from an archive
using this style of preservation.

In order to understand Archival Caricaturization replay, consider the example in Figure 12 that
demonstrates three different ways to make a div have a green background. The first div in Figure 12
(line 22) has the green background definition inline, via the style attribute of the element. The second
div (line 23) relies on the CSS id selector “#gbg” with the pseudo-element “::before” (lines 11-18) to
give it the green background. Note that pseudo-elements are considered virtual markup and only become
realized for a page after a browser has interpreted a CSS file or style tags contents. The third and final
div (line 24) receives its green background through the usage of the CSS class “greenBG”. The visual
representation of the example from Figure 12 is shown in Figure 13.

Consider the HTML of the example webpage after being archived in archive.is, which uses Archival
Caricaturization (Figure 14). The example’s original markup (Figure 12, lines 1-26) has been replaced
completely and is represented by a div with the class html1 (Figure 14, lines 14-21). The head tag and its
content no longer exist, whereas, the body tag is represented by another div with the class body (lines
16-22). The first green box, line 17, almost exists as it did in the original (Figure 12 lines 22) with the
additional style definition “text-align: left;” added to it as do the remaining two green boxes (Figure 12
lines 23 and 24). Although the HTML has been dramatically changed, the rendering of the webpage still
appears that same as the original. The archived page can be viewed at http://archive.is/t0T8m.

5 CLIENT-SIDE REWRITING

As discussed in Section 4.1.3, Wayback-style Sandboxed replay systems rely on client-side rewriting
to ensure that dynamic content added or requested by JavaScript is rewritten, which is essential for
temporal jailing. To illustrate the importance of client-side rewriting, consider the lazy loading of
new story footer images on the archived BBC page, http://web.archive.org/web/20180223141745/http:
//www.bbc.com/news/world-middle-east-26116868, in the Internet Archive as replayed in 2018.18 The

18This issue has since been resolved, likely due to updates based on this work that we provided to the wombat.js
client-side rewriting library that the Wayback Machine has since deployed (https://twitter.com/IlyaKreymer/status
/1396583618911240193).
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Fig. 11. PastPages preserves a news site’s essence through images

web page appears to replay as expected (e.g., images accompanying the news story are visible), however,
when the user scrolls to bottom of the page, images are missing from the additional stories footer, as
shown in Figure 15. Upon further inspection of the missing images, the value for their img tag’s src
attributes are un-rewritten URLs (one is highlighted in Figure 16). These un-rewritten URLs are also
found as the value of the img tag’s datasrc attributes. Because the src attribute of those img tags were
set to an un-rewritten URL, the images they were supposed to be loading were blocked by the Wayback
Machine’s CSP (as shown in the Developer window in Figure 17). We inspected the CSS classes of the
img tags for the blocked images and found that the img tags were responsive image placeholders that are
to be replaced with the real image by JavaScript. When the page loads, the page’s JavaScript makes a
request for the lazy loaded images. The response is JSON that contains additional information pertaining
to the internals of the page and a string of HTML that is added to document in preparation for the
lazy loading of the images (Figure 18). However, the server-side rewriting performed by the Wayback
Machine is not able to rewrite the JSON found in the response bodies of archived requests. This causes
the JavaScript code responsible for the lazy loading of the images to operate on un-rewritten URLs.
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1 <html>
2 <head>
3 <meta name="seo" content="index me!"/>
4 <style>
5 .greenBG {
6 background: green;
7 height: 25px;
8 width: 25px;
9 margin: 5px;

10 }
11 #gbg::before {
12 content: "";
13 background: green;
14 display: block;
15 height: 25px;
16 width: 25px;
17 margin: 5px;
18 }
19 </style>
20 </head>
21 <body>
22 <div style="background: green; height: 25px; width: 25px; margin:5px;"></div>
23 <div id="gbg"></div>
24 <div class="greenBG"></div>
25 </body>
26 </html>

Fig. 12. Simple Webpage Showing Different Ways to Display a Div with a Green Background http://cs.odu.edu/~jber
lin/originalThreeGreen.html

Fig. 13. Webpage from Figure 12 as Rendered in Google Chrome

Client-side rewriting would be able to inspect and rewrite the URL found in the data-src attribute in the
JSON response, allowing the lazy loading to request the archived images.

The current approach to client-side rewriting is the rewriting library employed by Pywb and Webrecorder
Wombat. At its core, Wombat performs the same rewriting done server-side with the addition of targeted
JavaScript API overrides in order to rewrite the URLs they operate on. The targeted aspect of Wombat’s
rewriting makes it an effective addition to server-side rewriting, but it is a handcrafted library specifically
tailored for Pywb and Webrecorder, and thus cannot easily be applied to other archival systems. Our
goal is to provide a standard general solution for the creation of a client-side rewriting library.
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Fig. 14. Transformation of HTML shown in Figure 12 as archived through caricaturization. http://archive.is/t0T8m

Previously, a general solution for client-side rewriting libraries did not exist because the JavaScript web
and DOM APIs provided by the browser could change rapidly without a central standard from which
to base the solution, as exists for server-side rewriting. However, we have identified such a standard.
The HTML specification [WHATWG Working Group 2022] mandates that even the most reactive web
applications and the JavaScript interfaces for interacting with the document (DOM) are governed by the
HTML specification, and that user agents supporting web scripting (JavaScript) must abide by the Web
IDL fragments contained in the specification. Using this knowledge, we can derive a generalized and
standard solution for the creation of client-side rewriting.

Taking advantage of Web IDL, we have implemented a client-side rewriter that improves upon that
found in the Pywb rewriter. In this section, we present an overview of how our client-side rewriter was
implemented. We first describe Web IDL and then the process to auto-generate a client-side rewriter, which
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Fig. 15. bbc.com new story footer images blocked by the Wayback Machine’s content security policy. http://web.arch
ive.org/web/20180223141745/http://www.bbc.com/news/world-middle-east-26116868

Fig. 16. DOM inspector shows unrewritten image URLs

involves identifying the Web IDL interfaces available in the browser and then generating overrides for
those interfaces that specify a URL that should be rewritten. Further details are provided in Berlin’s MS
thesis [Berlin 2018]. Our client-side rewriter, Emu, is available at https://github.com/N0taN3rd/Emu,
and an initial implementation of a web crawler using this client-side rewriter is available at https:
//github.com/N0taN3rd/msThesisCrawler.
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Fig. 17. Network tab of the browser developer tools, showing that one of the bbc.com new story footer images
(_99947493_collage.jpg) is blocked by the Wayback Machine’s content security policy. http://web.archive.org/we
b/20180223141745/http://www.bbc.com/news/world-middle-east-26116868

<div class="sparrow-item__image">
<div class="responsive-image responsive-image--16by9">
<div class="js-delayed-image-load"
data-src="https://ichef.bbci.co.uk/news/200/cpsprodpb/9A32/production/_99947493_collage.jpg"
data-width="976" data-height="549" data-alt="Alexanda Kotey, left, and El Shafee Elsheikh"></div>
<!--[if lt IE 9]>
<img src="https://ichef.bbci.co.uk/news/200/cpsprodpb/9A32/production/_99947493_collage.jpg"
class="js-image-replace" alt="Alexanda Kotey, left, and El Shafee Elsheikh" width="976"
height="549"/>↪→

<![endif]-->
</div>

</div>

Fig. 18. Portion of the response to the request for the additional stories images
/news/pattern-library-components?options.... http://web.archive.org/web/20180223141745/http:
//www.bbc.com/news/world-middle-east-26116868

5.1 Web IDL

The Web Interface Design Language (Web IDL) format was created by the W3C to “describe interfaces
intended to be implemented in web browsers” [WHATWG Working Group 2017b]. In essence, it provides
a standard way to interact with the DOM. Web IDL specifies the underlying behavior (browser imple-
mentation) and shape of the JavaScript Web and DOM APIs through five core constructs: interface,
typedef, enum, dictionary, and callback.

Web IDL uses interfaces to describe how the actual JavaScript [Harband et al. 2021] objects implementing
the interface are to behave, in addition to how to mutate the object’s state and invoke the behavior
described by the interface. The primary members of an interface are attributes, describing the
exposed state of the implementing object, and operations, which describe behaviors (methods) that can
be invoked on the object [WHATWG Working Group 2017b]. Each of the constructs defined by Web
IDL have their own mapping to the JavaScript execution environment. The main construct of concern in
this work is the Web IDL interface type. The Web IDL specification states that in each JavaScript
implementation (web browser) for a set of Web IDL fragments, there will exist a corresponding JavaScript
object, and all interfaces the implementation supports will be exposed on the global environment
object [WHATWG Working Group 2017b].
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Figure 19 shows an example of a Web IDL interface to JavaScript mapping. Lines 1 and 2 illustrate
an interface having both an interface object and an interface prototype object. The interface
object exists on the global JavaScript environment object (window) as a named property, its IDL interface
identifier (Figure 19, line 1). The prototype object for the interface exists as the prototype property
on the interface object (Figure 19, line 2). When you create a new HTMLAnchorElement (Figure 19,
line 4) you receive a new instance (a prototype) of the interface object. Through this object, you can
view or mutate the new instance’s state via setting or getting its properties (Figure 19, lines 5 and 6).

Fig. 19. Web IDL interface (HTMLAnchorElement) to JavaScript mapping (a)

Now consider the actual Web IDL fragment for the HTMLAnchorElement, seen with annotations
in Figure 20. The definition for the HTMLAnchorElement has all the attributes defined for the an-
chor tag in the HTML specification except for the href attribute, found on the URLUtils interface
which HTMLAnchorElement implements (line 16). Because the URLUtils interface was defined with the
NoInterfaceObject extended attribute, it will not have an interface object, only an prototype
object, whereas HTMLAnchorElement has both because it was not defined with the NoInterfaceObject
extended attribute. Because HTMLAnchorElement implements URLUtils, the attributes and operations
on the URLUtils prototype object are also on the HTMLAnchorElement interface object. Like-
wise, it also contains the attribute and operations from HTMLElement, as it is extended (inherited) by
HTMLAnchorElement.

5.2 Auto-generating a Client-Side Rewriter

The fundamental goal of URL rewriting is to ensure that every URL found in or operated on by an
archived resource points to the archive at a specific Memento-Datetime. Server-side rewriting achieves this
goal for archived HTML and CSS because the locations of those URLs are well-defined by their respective
specifications. To account for some of the capabilities of JavaScript, server-side rewriting does perform
some additional rewriting beyond those well-known locations, but, as shown earlier, there are instances
where server-side rewriting is not sufficient. Our implementation of a client-side rewriter takes advantage
of the fact that JavaScript can only perform manipulations on the DOM using the APIs described by
the Web IDL fragments included or linked to by the specifications for well-known URL identifiers used
in server-side rewriting of HTML and CSS. We use these Web IDL fragments in combination with the
description of how Web IDL maps to the JavaScript environment to auto-generate a client-side rewriting
library.

Automatic generation of a client-side rewriter requires that the rewriter generator have the following
properties:

(1) generates JavaScript that follows the convention set by the de facto standard client-side rewriting
libraries implemented in Pywb and Webrecorder’s Wombat
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1 interface HTMLAnchorElement : HTMLElement {
2 [Reflect] attribute DOMString target;
3 [Reflect] attribute DOMString download;
4 [Reflect] attribute DOMString ping;
5 [Reflect] attribute DOMString rel;
6 [Reflect] attribute DOMString hreflang;
7 [Reflect] attribute DOMString type;
8 [Reflect] attribute DOMString referrerpolicy;
9 [Reflect] attribute DOMString text;

10 [Reflect] attribute DOMString coords;
11 [Reflect] attribute DOMString charset;
12 [Reflect] attribute DOMString name;
13 [Reflect] attribute DOMString rev;
14 [Reflect] attribute DOMString shape;
15 };
16 HTMLAnchorElement implements URLUtils;
17

18 [NoInterfaceObject]
19 interface URLUtils {
20 attribute USVString href;
21 [NotEnumerable, ImplementedAs=href] USVString toString();
22 readonly attribute USVString origin;
23 attribute USVString protocol;
24 attribute USVString username;
25 attribute USVString password;
26 attribute USVString host;
27 attribute USVString hostname;
28 attribute USVString port;
29 attribute USVString pathname;
30 attribute USVString search;
31 attribute USVString hash;
32 };

Inherited prototype object

Prototype object of
the interface object.

Implemented interface’s
prototype inherited

Fig. 20. HTMLAnchorElement.idl

(2) knows how to convert the URL identifiers for Web IDL interfaces that are HTML elements (Table 1)
and the attributes of the CSSStyleDeclaration interface to their server-side equivalents (Section
5.2.1)

(3) knows how to generate the appropriate rewriting functionality client-side for each of the identified
interfaces (Sections 5.2.1 and 5.2.2)

(4) understands the inheritance hierarchy and exposed location information included with each interface
(Sections 5.2.1 and 5.2.2)

(5) knows how to generate the override modifications in JavaScript (Section 5.2.3)

We will briefly describe how we implemented our rewriter generator to have each of these properties in
the following subsections. Additional details are provided in Berlin’s MS thesis [Berlin 2018].
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Table 1. HTML Element Attributes With Server-Side Rewrite Modifier From Pywb

Tag Attribute Rewrite Modifier

a, area href None
audio, embed
input, source src oe_
track, video
audio, video poster im_
iframe src if_
frame src fr_
base href mp_
form action mp_
img src im_

srcset im_
link href cs_, mp_, None
meta content mp_
object data oe_
script src js_
source srcset oe_
* style mp_, im_

5.2.1 Identifying Web IDL Interfaces. Fundamentally both client-side and server-side rewriting operate
under the same constraints, that is, neither can rewrite URLs unless they know where to look. Server-side
rewriting looks for URLs in HTML based off the tag and attribute name (Table 1) and looks for URLs
in CSS contained in the import or url keywords (Figure 5). Client-side rewriting, on the other hand,
must be able to apply overrides for well-known URL identifiers that are found within the constructs
of Web IDL. The base set of identifiers required to correctly determine which Web IDL interfaces are
needed to generate a complete client-side rewriting library come from the existing URL identifiers used by
server-side HTML and CSS rewriting. These 8 URL identifiers are listed in the Attribute column of Table
1. However, the naming conventions for HTML element interfaces in Web IDL do not match the actual
tag name, so the Web IDL interfaces must be identified based on if they contain the known attributes.

The Web IDL interfaces associated with these attributes are identified by examining the interface
specifications. For example, the anchor tag in HTML is denoted by a, but the Web IDL interface is
HTMLAnchorElement (Figure 19). The match is found when considering the identifiers of attributes that
are the same as the attribute names used by server-side rewriting (Attribute column in Table 1). The
HTMLAnchorElement Web IDL interface (Figure 20) includes the attribute href through the inherited
URLUtils interface. Since HTMLAnchorElement inherits the prototype object HTMLElement, we can add
HTMLElement to our list of known Web IDL interfaces associated with the href identifier. We use a
similar process to discover additional Web IDL HTML element interfaces.

We note that the style attribute is also the semantic name of an HTML element whose text content
contains the full set of allowed CSS style definitions (example in Figure 21). Because the style attribute
also doubles as a tag, we know that the generated client-side rewriter must be able to rewrite URLs found
in the style definitions of the style attribute found on arbitrary elements and within the text contents of
a style tag when modified via JavaScript.
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Fig. 21. CSS style properties that may contain URLs and how URLs may exist in CSS style definitions found in a style
tag

Table 2. Baseline Interface Discovery Identifiers

Interface kind Identifiers

HTMLElement action, content, data, href, poster, src, srcset
Non-HTMLElement href, url, scriptURL

To identify additional well-known URL identifiers, we consider pages that access and mutate the
style attribute or any attribute of HTML elements that can be used to initiate browser resource
fetches. One example is the Element interface which exposes the identifiers innerHTML, outerHTML, and
insertAdjacentHTML, used to insert document markup via strings, and the insertAdjacentElement
identifier used to insert new element instances into the document. Likewise, the Node interface exposes
identifiers insertBefore, appendChild, and replaceChild, which can also mutate document markup.

The final set of well-known URL identifiers can be found in the naming conventions of the exposed
identifiers for non-element interfaces and how the identifiers of the interfaces can be used as the typing of
an arbitrary identifier. The identifiers of non-element interface identifiers can be discovered using the
naming conventions of their attributes and operation or constructor argument identifiers, href, url, and
scriptURL. The downside to using only the identifier names previously mentioned is we would miss the
operation identifier fetch exposed on the Window interface, because neither the identifier itself nor its
argument identifiers match any of the well-known identifiers for non-element interfaces. But we were
able to overcome this by noticing that the first argument to fetch is of type RequestInfo, which is a
typedef for the Request interface or a string. Because we had previously discovered the Request interface
by its url attribute identifier and know the interface is a part of the RequestInfo typedef, we can use
the typedef and the Request interface’s type to discover additional identifiers. The type system of Web
IDL not only provides a useful heuristic for determining how a discovered identifier is used when name
matching is impossible, but also for discovering usages of the type for already discovered interfaces.

This identification process results in a baseline of 10 URL identifiers, 7 for discovering interfaces that
are HTMLElements and three identifiers for the discovery of non-HTMLElement interfaces (Table 2).
The remaining well-known interface and member URL identifiers shown in Table 3 are considered to be
special cases given the specificity of their use cases.
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Table 3. Special Well-Known Interface and Member Identifiers

Interface Identifiers Member Type Identifiers

HTMLStyleElement Attribute textContent
HTMLIframeElement Attribute srcdoc

Attr Attribute value, nodeValue

Node Operation
insertBefore, appendChild

replaceChild

Location
Attribute href
Operation assign, replace

Document
Attribute domain, cookie
Operation write, writeln

CSSStyleDeclaration
Attribute cssText
Operation setProperty

Element
Attribute innerHTML, outerHTML

Operation
getAttribute, setAttribute

insertAdjacentElement
insertAdjacentHTML

5.2.2 Automatic Web IDL Interface Identification. Once we have identified the well-known URL identifiers
and determined how they map to Web IDL interfaces, we can write an algorithm to automatically identify
the Web IDL interfaces that should be evaluated for client-side rewriting.

Automatically identifying relevant Web IDL interfaces can be expressed in two phases: fragment
extraction and identification. In the fragment extraction phase (Algorithm 1), each fragment’s members
from the set of Web IDL fragments to be considered are extracted and the following steps are performed.
For each member, we accumulate a mapping of interface identifiers to interfaces, ensuring that partial
interfaces are merged into the primary interface and typedefs to the type(s) that were redefined. Then,
for each of the extracted interfaces, we merge implemented interfaces into the implementer interface
and ensure interfaces inheriting from another are updated to include information about the inheritance
hierarchy of which they are a part. Finally, this returns the interfaces and typedefs extracted to the
next phase identification. The identification phase (Algorithm 2) is multi-part algorithm performing the
steps for identifier discovery. For each interface that has an interface object and is an HTMLElement, we
check to see if the interface has members matching the well-known HTML identifiers (e.g., data, href, src
in Table 2). If the interface is not an HTMLElement, then we check the interface for the non-element
identifiers (e.g., href, url, scriptURL in Table 2). This process is outlined in Algorithm 3. A further check
is made to determine if the interface is a special case (identified in Table 3) and if so, its members are
checked using the associated attribute or operation identifiers (Algorithm 3). Once every interface having
an interface object has been checked, we determine which of the identified interfaces are used in a typedef
and then check the arguments of operations and constructor of each identified interface to determine if
their typing is the typedef. We then determine if any of the identified interfaces have attributes whose
type is an already identified interface to ensure we can handle cases such as the location attribute of
Window and Document (Algorithm 4).
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Algorithm 1 Web IDL Fragment extraction

1: function GetIdlData(idlFragments)
2: interfaces ← Map
3: implements, typeDefs,isTypeDefd ← MultiMap
4: for each member ∈ extractFragmentMembers(idlFragments) do

5: if member #→ Interface ∨ P artialInterface then

6: if interfaces.hasKey(member.identifier) then

7: interfaces[member.identifier] ← update(interfaces[member.identifier],member)
8: else

9: interfaces[member.identifier] ← member

10: else if member #→ Implements then

11: implements[member.target] ← member.implements
12: else if member #→ T ypeDef then

13: typeDefs[member.identifier] ← member.types
14: for each type ∈ member.types do

15: isTypeDefd[type] ← member.identifier

16: for each identifier ∈ interfaces.keys do

17: interface ← interfaces[identifier]
18: if interfaces[identifier].inheritance ! = Nil then

19: interfaces[identifier] ← updateInheritanceInformation(interface,interfaces)

20: if implements.hasKey(identifier) then

21: interfaces[identifier] ← updateFromImplements(interface,interfaces,implements)

22: return interfaces,typeDefs,isTypeDefd

Algorithm 2 Identify interfaces

1: function IdentifyInterfaces(idlFragments)
2: interfaces, typeDefs,isTypeDefd ← GetIdlData(idlFragments)
3: foundInterfaces ← Map
4: for each interface ∈ interfaces do

5: if !interface.noInterfaceObject then

6: if isOrSubTypeOfHTMLElement(interface) then

7: CheckMemberIdentifiers(interface,htmlElementIds,foundInterfaces)
8: else

9: CheckMemberIdentifiers(interface,nonHTMLElementIds,foundInterfaces)

10: if checkSpecial.hasKey(interface.identifier) then

11: SpecialCheck(interface,specialCheck,foundInterfaces)

12: for each foundId ∈ foundInterfaces.keys do

13: if isTypeDefd.hasKey(foundId) then

14: FindTypedefArguments(isTypeDefd[foundId],interfaces,foundInterfaces)

15: for each foundId ∈ foundInterfaces.keys do

16: if nonElementInterface(foundInterfaces[foundId]) then

17: CheckFoundAttsRefFoundType(foundId,interfaces,foundInterfaces)

18: return foundInterfaces,typeDefs,isTypeDefd

These identification algorithms were run on an input set of Web IDL fragments retrieved from the
source code repository of the Chromium browser19 (v67) using the W3C provided Node.js parser.20

The algorithms successfully identified the HTML element interfaces in which we are interested and the

19https://chromium.googlesource.com/chromium/blink/+/master/Source
20https://github.com/w3c/webidl2.js
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Algorithm 3 Check Interface Based On Identifier Names

1: function CheckMemberIdentifiers(interface,toFind,found)
2: attributes ← getAttributesNamed(interface,toFind)
3: operations ← getOperationsWithArgsNamed(interface,toFind)
4: constructors ← getConstructorsWithArgsNamed(interface,toFind)
5: if anyNotEmpty(attributes,operations,constructors) then

6: identified ← newIdentified(interface,attributes,operations,constructors)
7: found[identified.identifier] ← identified

8: function SpecialCheck(interface,specialCheck,found)
9: attributes ← getAttributesNamed(interface,specialCheck.attributes)

10: operations ← getOperationsWithArgsNamed(interface,specialCheck.operations)
11: if anyNotEmpty(attributes,operations,constructors) then

12: if found.hasKey(interface.identifer) then

13: foundIface ← found[interface.identifier]
14: foundIface.attributes ← foundIface.constructors ∪ attributes
15: foundIface.operations ← foundIface.operations ∪ operations
16: else

17: foundIface ← newIdentified(interface,attributes,operations)
18: found[identified.identifier] ← identified

Algorithm 4 Find Interfaces with members typed

1: function FindTypedefArugments(typeDefs,interfaces,found)
2: for each typedef ∈ typeDefs do

3: for each interface ∈ interfaces do

4: operations ← getOperationsWithArgsTyped(interface,typedef)
5: constructors ← getConstructorsWithArgsTyped(interface,typedef)
6: if operations ! = ∅ ∨ constructors ! = ∅ then

7: if found.hasKey(interface.identifier) then

8: foundIface ← found[interface.identifier]
9: foundIface.operations ← foundIface.operations ∪ operations

10: foundIface.constructors ← foundIface.constructors ∪ constructors
11: else

12: foundIface ← newIdentified(interface,∅,operations,constructors)
13: found[foundIface.identifier] ← foundIface

14: function CheckFoundAttsRefFoundType(foundId,interfaces,found)
15: for each fId ∈ foundInterfaces.keys do

16: atts ← getAttriubteOfType(interfaces[fId],foundId)
17: if notEmpty(atts) then

18: foundInterfaces[fId].exposesFound[foundId] ← atts
19: exposed ← foundInterfaces[foundId]
20: exposed.exposedOnFound ← exposed.exposedOnFound ∪ fId

named constructor Audio, associated with the HTMLAudioElement. Table 4 lists the identified Web IDL
interfaces and their members.

The remaining interfaces and attribute or operation identifiers were discovered using the well-known non-
element identifiers in Table 2 and the type matching heuristic (Table 5). The identification algorithm was
successfully able to identify the interfaces for using the HTTP protocol namely fetch, Request, Response,
XMLHTTPRequest and EventSource [WHATWG Working Group 2022], the WebSocket protocol [Fette
and Melnikov 2011], as well as the location attribute of both Window and Document.
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Table 4. Identified HTML Interfaces from the Chromium browser

Interface Member

HTMLBaseElement, HTMLAnchorElement
href

HTMLAreaElement, HTMLLinkElement
HTMLAudioElement, HTMLEmbedElement

src
HTMLFrameElement, HTMLTrackElement
HTMLInputElement, HTMLMediaElement
HTMLScriptElement
HTMLImageElement

src, srcset
HTMLSourceElement
HTMLIFrameElement src, srcdoc
HTMLFormElement action
HTMLMetaElement content
HTMLObjectElement data
HTMLStyleElement textContent
HTMLVideoElement poster, src
HTMLAudioElement Audio(src)

5.2.3 Generating a Client-Side Rewriter. Generation of the client-side rewriting library relies on the Web
IDL to JavaScript mapping discussed in Section 5.1 as the basis for generating the overrides applied to
the identified interfaces. Interfaces that are not declared with the NoInterfaceObject extended attribute
have a corresponding JavaScript object or function object and their attributes and operations exist as
named properties on the interface’s prototype object [Harband et al. 2021; WHATWG Working Group
2017b]. The prototype object in JavaScript is the fundamental building block for all objects, and
provides a permanent record of an object’s own (non-inherited) and inherited properties. Since we know
that every identified interface will have a prototype object, the modification made to those interfaces
can be categorized by five types of overrides: patch, replace, replace plus patch, foreign substitution, and
extend.

The patch override patches the prototype object of an identified interface that does not expose a
constructor. This override redefines the named properties of the interface’s attributes and operations in
order to intercept un-rewritten URLs (Figure 22). Because the prototype object provides a permanent

1 interface Element : Node {

2 attribute DOMString innerHTML;

3 attribute DOMString outerHTML;

4

5 DOMString? getAttribute(DOMString name);

6 void setAttribute(DOMString name, DOMString value);

7 };

Redefine properties getter and setter
functions on prototype object

Redefine function directly
on prototype object

Fig. 22. Interface attribute and operation patch overrides

record for all properties an object has, redefinition of attributes only replaces the original named property’s
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Table 5. Identified Non-Element or Special Case Interfaces

Interface Type Member

Clients Operations openWindow

Document Attributes location

EventSource
Attributes url
Constructors Constructor(url, eventSourceInitDict)

History Operations pushState, replaceState

Navigator Operations
sendBeacon, registerProtocolHandler

isProtocolHandlerRegistered
unregisterProtocolHandler

Request
Attributes url
Constructors Constructor(input, requestInitDict)

Response
Attributes url
Operations redirect

ServiceWorkerContainer Operations register

ServiceWorkerGlobalScope Operations fetch

SharedWorker Constructors Constructor(scriptURL, name)

URL
Attributes href
Operations revokeObjectURL
Constructors Constructor(url, base)

WebSocket
Attributes url
Constructors Constructor(url, protocols)

Window
Attributes Location
Operations open, fetch

WindowClient
Attributes url
Operations navigate

Worker Constructors Constructor(scriptURL)

WorkerGlobalScope Operations fetch

XMLHttpRequest Operations open

getter and setter functions to use archive-controlled versions. This is the same for the redefinition of named
properties for operations, which only replaces the original function’s definition with an archive-controlled
version (Figure 23).

The replace override is used to replace (shadow) the definition of an attribute or operation directly on
the existing instance of the interface Window, which is the primary global execution object, representing
the current browsing context. With the in-place security constraints of the browser, we cannot directly
modify the existing Window object or its prototype. Rather, we apply the override to the WindowProxy
object [van Kesteren 2016; WHATWG Working Group 2022], which proxies the exposed attributes and
operations of the Window interface (Figure 24).
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Fig. 23. Prototype object patch modification

global execution object proxy

attribute property

archive getter

proxied getter

archive setter

proxied setter

archive function property

proxied function property

internal global execution object

internal prototype

attribute property

original getter

original setter

original function property

Shadows

Fig. 24. Global execution object replace modification

The replace plus patch override is a combination of both the replace and patch overrides applied to the
remaining identified interfaces that have existing instances. For example, the Document interface provides
two operations for introducing new markup into the current page, namely write and writeln. We want
to ensure that both the existing instance and its prototype object share the same overrides that were
made to the existing instance (Figure 25). By replacing the existing instance’s copy of the operations
and patching the prototype object for the interface, we can ensure that no reference to an unpatched
version of the named property exposed by the interface can be retrieved.

The extend override creates a new subtype of non-element interfaces that have a constructor or an
HTMLElement that has a named constructor and replaces the reference to the interface on the primary
global object with the archived controlled subtype. The new interface inherits all the properties of the
extended interface and is a subtype of the extended interface (Figure 26).

The final override type is foreign substitution. It exists primarily due to the capabilities of the unforgeable
(unmodifiable or overridable) Location interface, which is also an Unforgeable attribute of the primary
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object

attribute property

archive getter

original getter

archive setter

original setter

archive function property

original function property

prototype object

attribute property

archive getter

original getter

archive setter

original setter

archive function property

original function property

Existing

Shadows

Original

Fig. 25. Existing instance replace plus patch modification

Fig. 26. Example extend override

global object Window and the Document interface (Figure 27). This override is the only one to introduce
a new (foreign) representation of the interfaces it is targeting. Any assignment to the existing instance of
the Location interface itself or to the interface’s href attribute will navigate the browser away from the
current page.

Because of the capabilities of the unforgeable Location interface, archives began rewriting server-side
the text string “location” found in archived JavaScript to reference
WB_wombat_self_location, an archive implementation of the Location interface. Even though server-
side rewriting the text string “location” in the archived JavaScript of a page was more successful than
server-side rewriting of URLs only, it was also rewriting instances of the text string “location” that were
not actual instances of the Location interface.

Figure 28 shows an example of this incorrect rewriting. The live version of the page is shown in
the right column, and the version replayed by Archive-It is shown in the left column. There are four
instances of the term “location” that are rewritten to WB_wombat_self_location. But, this rewriting is
only correctly done twice out of the four rewrites shown. The first incorrect rewrite happens for an object
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[Unforgeable]

interface Location {

attribute USVString href;

void assign(USVString url);

void replace(USVString url);

};

[PrimaryGlobal]

interface Window : EventTarget {

[PutForwards=href, Unforgeable] readonly attribute Location? location;

};

interface Document : Node {

[PutForwards=href, Unforgeable] readonly attribute Location? location;

}

Fig. 27. Foreign substitution unforgeable Location interface

that describes the location of the user (lines 2-12) and the second happens for the location property of an
object that is the HTTP header of an HTTP response (lines 25-33). The remaining two rewrites (lines 18
and 19) were made correctly and are found in the code causing redirection when replayed because the
page’s JavaScript expects a cookie to exist which is nonexistent.

Webrecorder and Pywb, like Archive-It, were incorrectly rewriting the “location” text string in an
archived page’s JavaScript and also in non-JavaScript content bundled with the JavaScript. An example
of this is shown in Figure 29. This page is from the documentation21 for the ReactRouter JavaScript
library, which bundles the example code for its documentation as HTML strings alongside the page’s
JavaScript. Because the example code was bundled with JavaScript, the text string “location” was
incorrectly rewritten server-side due to its MIME type being application/javascript and not text/html.

To overcome this problem, we have developed a novel solution for eliminating the majority of additional
rewrites required for the foreign substitution modification through the usage of a JavaScript Proxy object
[Harband et al. 2021].

The JavaScript Proxy object allows an archive to perform runtime reflection for fundamental operations
performed on or with the object being proxied. Simply put, the Proxy object allows for an archive to
define custom behavior for all operations that can be performed with or on the object that cannot be
done via the previous modifications via interceptors. This is especially useful for creating a more thorough
override for both the Window and Document interfaces (Figure 30), both of which had properties that
were incorrectly rewritten (Figure 28). As discussed previously, an archive cannot override the existing
instance for the Window object, and likewise, an archive cannot directly proxy the existing instance for
the Window interface but must proxy a plain object.

Because the archive proxy for the existing instance of the Window interface is in actuality a plain object,
each new property addition intercepted by the window proxy must be added to both the plain object
and the existing Window interface instance, as well the operation interceptors shown in Figure 30 lines
3-13. The existing instance for the Document interface on the other hand has no such restrictions, and

21https://reacttraining.com/react-router/web/example/auth-workflow
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1 // archive it version

2 window.__PRELOADED_STATE__ = {
3 "WB_wombat_self_location": {
4 "id": "fcc2fd44-d82e-45ca-8855-35ee6b8bfbe9",
5 "latitude": 63.44,
6 "longitude": 10.4,
7 "name": "Trondheim, Norway",
8 "city": "Trondheim",
9 "state": "Sør-Trøndelag",

10 "country": "Norway"
11 },
12 };
13

14 o.Auth.authCodeFlow({
15 authenticateOnStart: !1,
16 apiAuthenticateUrl: function() {
17 var t = "/sign-in/?routeTo=" +
18 encodeURIComponent(WB_wombat_self_location);
19 return WB_wombat_self_location = t
20 },
21 refreshAccessTokenUrl:

"/profiles/refreshToken/"↪→

22 });
23

24 function s(t) {
25 var e = t.headers.WB_wombat_self_location;
26 if (e && this.settings.followLocation &&
27 201 === t.status) {
28 var n =
29 {method: "GET",url: e,responseType:

"json"};↪→

30 return this.send(n);
31 }
32 return t.headers.link && "string" == typeof

t.headers.link↪→

33 && (t.headers.link = l(t.headers.link)), t;
34 }

// live web version

window.__PRELOADED_STATE__ = {
"location": {

"id": "fcc2fd44-d82e-45ca-8855-35ee6b8bfbe9",
"latitude": 63.44,
"longitude": 10.4,
"name": "Trondheim, Norway",
"city": "Trondheim",
"state": "Sør-Trøndelag",
"country": "Norway"

},
};

o.Auth.authCodeFlow({
authenticateOnStart: !1,
apiAuthenticateUrl: function() {

var t = "/sign-in/?routeTo=" +
encodeURIComponent(location);

return location = t
},
refreshAccessTokenUrl:

"/profiles/refreshToken/"↪→

});

function s(t) {
var e = t.headers.location;
if (e && this.settings.followLocation &&

201 === t.status) {
var n =

{method: "GET",url: e,responseType:
"json"};↪→

return this.send(n);
}
return t.headers.link && "string" == typeof

t.headers.link↪→

&& (t.headers.link = l(t.headers.link)), t;
}

Not actual location

Actual location

Not actual location

Fig. 28. Archive-It rewriting the text string “location” in the archived JavaScript of mendeley.com user pages. Live
web version on the right.

archives can directly proxy the existing instance for the Document interface and need only to supply an
interceptor for the property getter and setter (Figure 30 lines 18-19). This reduces the minimal server-side
rewriting requirement for JavaScript to URL rewriting and the setup shown in Figure 31. By wrapping
the archived JavaScript in an anonymous block scope and re-declaring each overridden interface’s existing
instance using the let declarator, an archive ensures that the archived JavaScript of page can only
perform operations that the archive allows.

According to the compatibility tables for the let declarator22 and JavaScript proxy object,23 the
minimal browser support for this method of performing the foreign substitution modification is Firefox
v44, Chrome v49, Safari v10, Opera v36, and Microsoft Edge v12. This method for performing the foreign
substitution modification and its initial implementation were contributed back to Pywb on April 28,
2017.24 Both Webrecorder and Pywb have since fully adopted this method and has been using it in

22https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/let#browser_compatibility
23https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy#browser_compatibility
24https://github.com/webrecorder/pywb/pull/215
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Fig. 29. Pywb version 0.33 rewriting the text string “location” found in non-JavaScript page markup for the
documentation of React Router. https://reacttraining.com/react-router/web/example/auth-workflow

production since August 21, 2017.25 We include a description here so that it may be used by other archives
to improve their replay fidelity and allow archived JavaScript to be replayed without modification.

5.2.4 Rewriter Generation. The overall process for generation of the client-side rewriter (Algorithm 5)
uses yield to denote a function that generates JavaScript code and operates as follows. For each of
the identified interfaces, if it inherits from HTMLElement, the patch override is generated for each of its
attributes, and if the interface had a named constructor, then an extend override is generated. If the
interface is a special check (Table 3), the overrides generated are determined by the interface’s identifier
(Algorithm 6). The Window interface generates the replace override, the Document interface generates the
replace plus patch override, the Location interface has the foreign substitution override generated, and
for all other special check interfaces, the patch override is generated. If the interface is neither an HTML
element or a special check but is a function object, the extend override is generated. Otherwise, for each of
its non-unforgeable attributes and operations, the replace plus patch override is generated (Algorithm 7).

6 EVALUATION

In this section, we evaluate the effectiveness of using a generalized client-side rewriter library to augment
server-side rewriting. This would be applicable for archives that do not currently use client-side rewriting,
such as the Internet Archive.

We formulate the following hypotheses:

25https://github.com/webrecorder/webrecorder/commit/12e2b507b88c4f0c00f29589436f7385dc512f9a
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Fig. 30. Archive Window and Document interface proxies

Fig. 31. Archive JavaScript proxy setup anonymous block scope

H1 Using client-side rewriting, the number of requests made by a composite memento will increase
when replayed from the Wayback Machine, ReqCS > Req

H2 Using client-side rewriting, the number of requests blocked by the content security policy of the
Wayback Machine will decrease, BlkReqCS < BlkReq

H3 Using client-side rewriting, the number of requests made by some composite mementos will decrease
due to archived JavaScript operating on rewritten URI-Rs rather than un-rewritten URI-Rs, which
are blocked and do not receive an HTTP response
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Algorithm 5 Rewriter Generation

1: for each interface ∈ found do

2: if inheritsFromHTMLElement(interface) then

3: for each attr ∈ interface.attributes do

4: yield PatchAttr(interface, attr)

5: if interface.namedConstructor ≠ Nil then

6: yield ExtendNamed(interface, interface.namedConstructor)

7: else if isSpecialCheck(inteface) then

8: yield GenerateSpecialCheck(inteface)
9: else

10: yield GenerateNoneElementNoneSpecialCheck(interface)

Algorithm 6 GenerateSpecialCheck

1: if interface.identifier == Window then

2: for each attr ∈ interface.attributes do

3: yield ReplaceAttr(interface,attr)

4: for each operation ∈ interface.operations do

5: yield ReplaceOperation(interface,operation)

6: else if interface.identifier == Document then

7: for each attr ∈ interface.attributes do

8: yield ReplacePlusPatchAttr(interface, attr)

9: for each operation ∈ interface.operations do

10: yield ReplacePlusPatchOperation(interface, operation)

11: else if interface.identifier == Location then

12: yield ForeignSubstitution(interface)
13: else

14: for each attr ∈ interface.attributes do

15: yield PatchAttribute(interface, attr)

16: for each operation ∈ interface.operations do

17: yield PatchOperation(interface, operation)

Algorithm 7 GenerateNoneElementNoneSpecialCheck

1: if interface.constructor ≠ Nil ∨ interface.hadConstructor then

2: yield Extend(interface)
3: else

4: for each operation ∈ interface.operations do

5: if !operation.unforgable then

6: yield ReplacePlusPatchOperation(interface, operation)

7: for each attribute ∈ interface.attributes do

8: if !attribute.unforgable then

9: yield ReplacePlusPatchAttribute(interface, attribute)

6.1 Data

Our goal was to evaluate the client-side rewriter on common cases, so we built a dataset containing
popular webpages that were likely to be archived. This evaluation was carried out in late 2017, so we
started with the June 2017 Alexa top 1,000,000 most visited websites.26 We retrieved the TimeMaps for

26http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
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Table 6. Crawler Recorded Metrics Term Definitions

Term Definition

Req Number of Requests Made, No Client-Side Rewriting

ReqCS Number of Requests Made, With Client-Side Rewriting

RewrtCS Number of Client-Side Rewrites

BlkReq Number of Requests Blocked By CSP, No Client-Side Rewriting

BlkReqCS Number of Requests Blocked By CSP, With Client-Side Rewriting

the top 3000 web pages (URI-Rs) from the list. From that, we selected the first 700 pages that had a
memento in the Internet Archive. We wanted our study to reflect the state of the web page during June
2017 (when the site was in the top 3000 Alexa ranking), so we selected mementos from June 2017 if
available. If a page did not have a memento between June 1 and June 30, 2017, we selected the latest
memento (URI-M) available. We resolved each URI-M using Google Chrome, saving the final redirected
URI-M for any pages that had an archived HTTP 3xx status. We discarded any URI-Ms that redirected
more than 10 times or took longer than 20 seconds for the browser to render the page. This filtering
resulted in a total of 577 URI-Ms to be evaluated.

The list of 577 URI-Ms along with the TLD count, Alexa rank, and temporal spread of the mementos is
available at https://n0tan3rd.github.io/quickExploreCrawledData/. Most of the URI-Rs had a memento
in June 2017, with only 8 URI-Rs having a latest memento before June 2017 (5 in 2013, 2 in 2016,
and 1 in May 2017). Our dataset has pages from a wide range of Alexa rankings. The top ranked
page was http://www.wikipedia.org (rank 5), and we had between 40-70 URI-Rs from each set of
100 ranks (i.e., ranks 1-99, 100-199, 200-299, ..., 900-999). The lowest ranked page in the dataset,
http://www.umeng.com, had an Alexa rank of 2134.

6.2 Experiment

Once we had ensured all URI-Ms were resolved and navigable, we measured the difference in the number
of requests made by the composite mementos from the Internet Archive’s Wayback Machine with and
without client-side rewriting.

Each page was crawled using the Google Chrome browser controlled using the Chrome DevTools
Protocol27 four times: twice without client-side rewriting and twice with client-side rewriting. For each
crawl we recorded the number of requests made by the composite memento and the number of requests
blocked by the Wayback Machine’s CSP. The crawler also recorded each call to the console API. We
recorded the calls to the console API because when the page was crawled with client-side rewriting
and a rewrite occurred, the injected client-side rewriter logged each rewrite occurring client-side using
the sentinel REWRITE: un-rewritten-url —> rewritten-url allowing us to measure the number of
client-side rewrites. Table 6 defines the notation used throughout this evaluation when referring to crawler
recorded metrics. The crawler visited each page for a maximum of 90 seconds or until network idle
was determined. The determination for network idle was calculated by keeping track of the request and
response pairs for a page, and when there was only one in-flight request (no response) for 3 seconds, the
crawler moved to the next page.

27https://chromedevtools.github.io/devtools-protocol/
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Table 7. Observed Request Increase, Rewrites Client-Side And Requests Blocked By CSP With and Without Client-Side
Rewriting

Observed Mean Median Min Max

ΔReq 77 29 -7,984 3,766

ΔReq′ 87 39 -7,983 4,151

RewrtCS 233 27 0 15,096

BlkReq 11 4 0 405

BlkReqCS 1 0 0 144

To ensure an accurate count of the requests made by a page with and without client-side rewriting, we
instructed the browser to inject JavaScript code when the document was loaded but before the embedded
resources were evaluated. This instruction scrolled the page at one second intervals a maximum of 25
times or until the bottom of the page was reached. The only difference in the JavaScript code injected
into each page was the inclusion or exclusion of the generated client-side rewriter. Also, to ensure an
accurate count of the number of rewrites that occurred client-side, we configured the injected client-side
rewriter to not rewrite URIs that were either already rewritten or were used internally by the Wayback
Machine.

Once both sets of crawls had completed, we calculated ΔReq, the difference in the number of requests
made by each composite memento with client-side rewriting (Equation 1), and ΔReq′, the composite
memento’s difference in requests, not counting those blocked by the Wayback Machine’s CSP (Equation
2).

ΔReq =ReqCS − Req (1)

ΔReq′
=ReqCS − BlkReqCS − Req − BlkReq (2)

6.3 Results

Table 7 shows the increase in requests made possible with client-side rewriting. Recall that each additional
request corresponds to a resource that was previously unable to be replayed from the Wayback Machine.
There were on average 77 more requests made with client-side rewriting. Not counting requests blocked
by the Wayback Machine’s CSP, that number increased to 87 additional requests, as client-side rewriting
prevented on average 10 requests (BlkReq − BlkReqCS) from being blocked by the CSP.

We also show the observed minimum and maximum increases in requests. There was at least one page
for which client-side rewriting greatly increased the number requests made to the archive (ΔReq =3,766
and ΔReq′

= 4,151) and one page where client-side rewriting greatly reduced the number of requests made
(ΔReq = -7,984 and ΔReq′

= -7,983). Upon inspection of the instances where client-side rewriting reduced
the number of requests made, we found that these pages were trying to set an HTTP cookie and then
forcing a page reload. When the cookie was not presented in the next HTTP request (which would
happen without client-side rewriting), the page would continue to try to set the cookie and reload. When
client-side rewriting was applied, the cookie was able to be set and the page loaded normally, reducing
the number of attempted reloads.

We note that the injection of the client-side rewriter did not occur for iframes created by JavaScript
that set the value of the iframe’s src attribute to “about:blank”, because the Google Chrome browser

ACM Trans. Web



To Re-experience the Web: A Framework for the Transformation and Replay of Archived Web Pages • 41

Table 8. Interface Operation Rewrites

Interface.operation RewrtCS Count

Element.getAttribute 12,109

Element.setAttribute 3,073

Document.write 3,030

Node.appendChild 865

Node.insertBefore 836

Node.replaceChild 120

Window.fetch 92

XMLHttpRequest.open 45

History.replaceState 33

Document.writeln 30

Element.insertAdjacentHTML 8

History.pushState 2

would only inject the code into browser contexts for a real origin. Even though the mean number of
client-side rewrites per composite memento RewrtCS was 23, we observed that there were composite
mementos crawled that did not require client-side rewriting at all, which is reflected by the observed
minimum BlkReq and BlkReqCS values.

Similarly, the maximum RewrtCS value observed (RewrtCS = 15,096) reflects that the crawler did visit
a composite memento for which client-side rewriting greatly increased the number of requests made when
replayed from the Wayback Machine. From numbers displayed in Table 7 it would appear that all three
of our hypotheses (H1, H2, and H3) are correct. To better understand the impact of client-side rewriting
on replaying archived web pages via the Wayback Machine, consider Figure 32a, which displays the
cumulative sum for the requests made with (ΣReqCSC) and without (ΣReqC) client-side rewriting. The
values for ΣReqCSC and ΣReqC do not begin to diverge with any significance until the crawler had visited
80 pages (P80), where we observed values ΣReqC = 20,417 and ΣReqCSC = 25,222. At P200 we observed
the values for ΣReqC and ΣReqCSC start to diverge again, with ΣReqC = 50,128 and ΣReqCSC =62,798.
It is not until P430 where we observed any significant increase in the values for ΣReqC with ΣReqC = 96,194
and ΣReqCSC = 122,267. At the end of the crawl, the total number of requests made without client-side
rewriting (ΣReqC) was 137,071 and with client-side rewriting (ΣReqCSC) was 182,122. As shown in Figure
32a, client-side rewriting increases the overall number of requests made by a page replayed from the
Internet Archive’s Wayback Machine. By the end of both crawls, the pages replayed with client-side
rewriting made a total of 45,051 additional requests (ΣReqCSC − ΣReqC), a 32.8% increase via 134,923
rewrites which occurred client-side (Figure 33a).

But before looking more closely at the decrease in the number of requests blocked by the Wayback
Machine’s CSP by using client-side rewriting, consider the breakdown of which of the identified interfaces
were responsible for the rewrites (Figure 33a and Tables 8 and 9). Using the stack traces included with
each of the console API’s calls captured by the crawler, we were able to break down the originator of the
rewrites into two categories identified as interface operations (Table 8) and general rewrites (Table 9).
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(a) ΣReqC vs. ΣReqCSC

(b) Req vs. ReqCS (per page)

Fig. 32. Cumulative number of requests (Figure 32a) and number of requests per page (Figure 32b) for 577 composite
mementos replayed from the Internet Archive’s Wayback Machine.

Because the majority of the archived JavaScript had undergone a minification process that obfuscated
the function names, we were unable to concretely determine which of the identified interfaces were
responsible for the rewrite. In those cases we use the name of the generated rewriter function which the
rewrite originated from, namely doRewrite and rewriteElement (Table 9). The doRewrite function is
the root function called for all rewrites and the rewriteElement function is responsible for rewriting
instances of the Element and Node interfaces. The getAttribute (RewrtCS = 12,109) and setAttribute
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(a) Cumulative number of client-side rewrites

(b) Number of client-side rewrites client-side per page.

Fig. 33. Cumulative number of client-side rewrites (Figure 33a) and number of client-side rewrites client-side per page
(Figure 33b) for 577 composite mementos replayed from the Internet Archive’s Wayback Machine.

(RewrtCS = 3,073) operation of the Element interface and the write operation of the Document interface
(RewrtCS =3,030) were responsible for the majority of the rewrites originating from an operation of an
identified interface (Table 8).

The operations of the Node interface, namely appendChild, insertBefore, and
replaceChild were responsible for the majority of remaining rewrites (Table 8). Also of note, we were
able to identify 92 rewrites occurring from the fetch operation of the Window interface, 45 rewrites
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Table 9. General Rewrites

Rewrite Where RewrtCS Count

doRewrite 94,975

rewriteElement 12,312

HTMLElement.style 2,381

HTML(Image|Source)Element.srcset 123

occurring from the open operation of the XMLHTTPRequest interface and 33 rewrites that occurred from the
replaceState operation of the History interface. As previously mentioned, we were unable to concretely
identify 94,975 rewrites (doRewrite) and 12,312 rewrites that occurred from the rewriteElement (Table
9). The remaining rewrites from the general rewrites category (Table 9) occurred from rewriting an instance
of the HTMLElement interfaces style attribute and the srcset attribute from the HTMLImageElement or
HTMLSourceElement interface.

As shown by Tables 8 and 9, client-side rewriting would indeed increase the replay fidelity of the Internet
Archive’s Wayback Machine, with the increase in replay fidelity for the Wayback Machine becoming
more clearly seen when considering the cumulative number of blocked requests with (ΣBlkReqCSC) and
without (ΣBlkReqC) client-side rewriting, as shown in Figure 34a. At P100 we observed ΣBlkReqC = 1, 425
requests were blocked by the content security policy of the Wayback Machine without client-side rewriting
with only ΣBlkReqCSC = 101 requests blocked once client-side rewriting was applied. At P165 we observed
the number of blocked requests for pages replayed with client-side rewriting increased sharply from
ΣBlkReqCSC = 184, observed at P155 to ΣBlkReqCSC = 337. We also observed that between P100 and
P165 the number of requests blocked for pages replayed without client-side nearly doubled from 1,425
to 2,533. After P165 ΣBlkReqCSC slowly increased to 847 by the end of the crawl, whereas ΣBlkReqC

increased to 6, 819. Overall, this results in an decrease of 87.5%. As shown in Figure 34, the replay fidelity
of the Internet Archive’s Wayback Machine was increased by 5,972 requests (ΣBlkReqC − ΣBlkReqCSC)
thus confirming H2.

The third hypothesis H3 is easily confirmed by considering Figure 35a, which shows the cumulative
sum of the observed total increase with and without client-side rewriting for each page encountered in
the Wayback Machine.

6.4 Revisiting the CNN Example

Recall the replay issue with the homepage of cnn.com discussed in Section 1. This page was crawled at
P308 with ΔReq = 362 when replayed with client-side rewriting. Because the generated client-side rewriting
included an override for the domain attribute of the Document interface, the page was able to be replayed
from the Internet Archive’s Wayback Machine (Figure 36) in 2017, before the Internet Archive made
their updates in 2020.

Even though the page is considered unreplayable (Figure 36b), 103 requests were made by the page
and only three requests were blocked by the CSP of the Wayback Machine. But when the page is replayed
with client-side rewriting (Figure 36a), 465 requests were made by the page, 0 requests were blocked by
the CSP of the Wayback Machine, and 4,666 rewrites occurred client-side. By using client-side rewriting,
the page’s original issue was alleviated and allowed a 351% increase in requests made by the page’s own
JavaScript, effectively restoring the original behavior of the page.
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(a) Cumulative number of blocked requests with and without client-side rewriting

7 CONCLUSION

We have discussed in-depth how to securely replay archived JavaScript by proposing a framework for
the automatic generation of client-side rewriting libraries. We defined a terminology for describing the
modifications made by client-side rewriting libraries to the JavaScript execution environment of the
browser. We also discussed how archives can reduce the amount of JavaScript rewriting required for
facilitating client-side rewriting. We evaluated the effectiveness of client-side rewriting in augmenting the
existing server-side rewriting systems of the Internet Archive.

Ensuring both high fidelity replay and the secure replay of archived JavaScript necessarily requires an
archive to employ client-side rewriting. However, this requires archives to create their own client-side
rewriting libraries and hand-tailor them to work with their existing server-side rewriting processes. To
mitigate the time and labor intensive process of creating client-side rewriting libraries by hand, we
proposed a framework for their auto-generation using the definitions of the targeted JavaScript APIs
described in the Web Interface Design Language (Web IDL).

We showed how we can use the Web IDL definitions and the Web IDL to JavaScript mapping
in combination with the specifications used by server-side rewriting, to generate a generic, archive
independent, client-side rewriting library.

As shown by the evaluation of our proposed framework for the auto-generation of client-side rewriting
libraries, client-side rewriting would both increase the replay fidelity of composite mementos and replay
security of JavaScript from the Internet Archive’s Wayback Machine. When the 577 composite mementos
replayed from the Wayback Machine were crawled with client-side rewriting in 2017, we were able to
decrease the total number of requests blocked by the content security policy of the Wayback Machine by
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(b) Number of blocked requests with and without client-side rewriting per composite memento

Fig. 34. Cumulative number of blocked requests (Figure 34a) and number of blocked requests per page (Figure 34b)
with and without client-side rewriting for 577 composite mementos replayed from the Internet Archive’s Wayback
Machine

87.5% and enabled an additional 45,051 requests to be made (replayed) by the composite mementos, an
increase of 32.8%.

We suspected that we would see a decrease in the number of requests made by a composite memento
because the archived JavaScript would be operating on URI-Ms rather than URI-Rs, which are blocked and
do not receive an HTTP response. We also suspected that because the composite mementos’ JavaScript
was operating on URI-Rs and not URI-Ms, their replay would be impacted. This effect was due to
the likelihood that the composite memento’s JavaScript was configured to continually make requests
for the same or fallback resource until a HTTP response is received. Our suspicions were confirmed
when considering both the cumulative and per composite memento request deltas (Section 6.3), as the
deltas revealed to us the extreme increases and decreases. We believe this would be a useful technique in
identifying damaged mementos at scale.

Finally, as a direct result of including the generated the client-side rewriter in the replay of the
composite mementos, we were able to make composite mementos that were previously un-replayable,
replayable again. The home page of cnn.com became replayable again because the generated client-side
rewriter applies an override targeting the document domain issue. Any page that also suffers from the
document domain issue also becomes replayable when client-side rewriting is used that applies the
necessary overrides for fixing that issue. Client-side rewriting solves the problem of variability in knowing
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(a) ΣΔReqC vs. ΣΔReq′
C

which attributes are used by a page for embedding URLs, by applying overrides to the JavaScript APIs
ultimately responsible for handling URLs.

This work has been adopted by the Webrecorder and Pywb playback systems and was used to address
playback issues in the Internet Archive’s Wayback Machine.
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