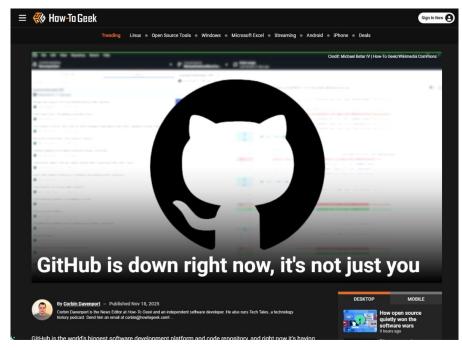
Linking Policies for the Permanent Web

Patrick Le, Quang Bui, Alexander Grigorian, Alexey Kuraev, Thiyazan Salman, <u>Tu H. Nguyen</u>, Mat Kelly, Sawood Alam

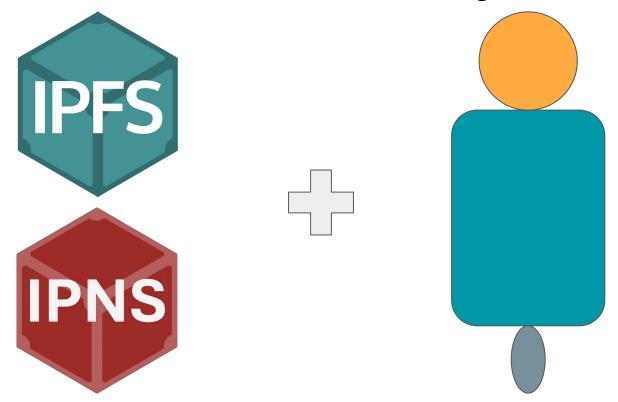
ptl46@drexel.edu jn866@drexel.edu

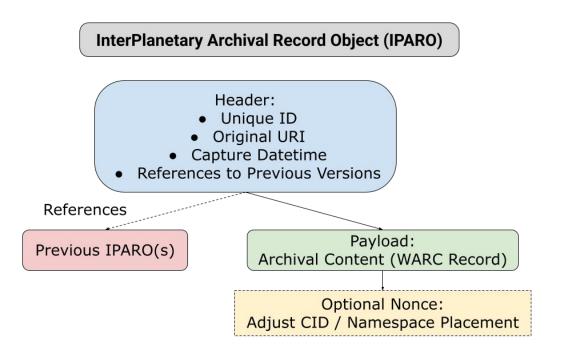
Drexel University CCI & Internet Archive ACM/IEEE Joint Conference on Digital Libraries (JCDL)


December 18th, 2025

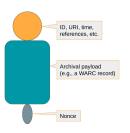
Why Decentralize Versioning

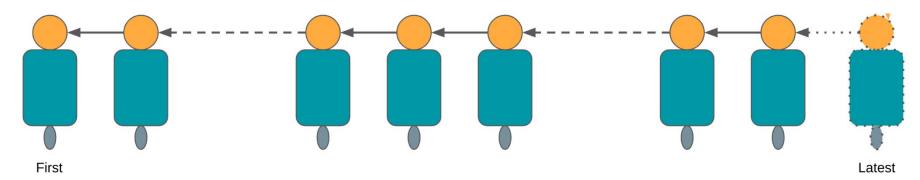
https://www.howtogeek.com/github-is-down-its-not-just-you/



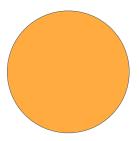


https://www.theverge.com/2024/10/14/24269741/internet-archive-online-read-only-data-breach-outage


Building Blocks of Decentralized Archiving



What is an IPARO?

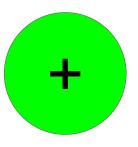

Linking IPAROs Over Time


Sawood Alam, "IPARO: InterPlanetary Archival Record Object for Decentralized Web Archiving and Replay," in iPRES 2023.

Methodology

Volume

How many versions for a given object?


Density

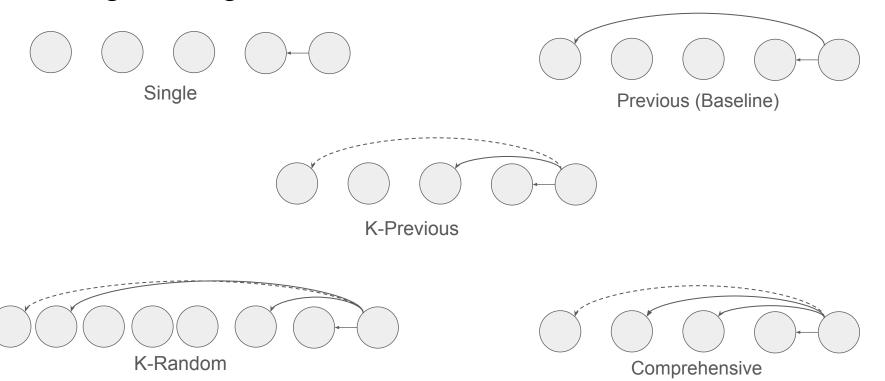
How often are versions recorded?

Linking Strategy

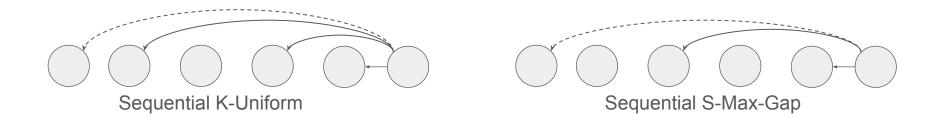
How does each object link to the prior versions?

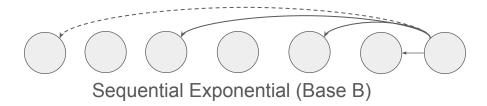
Operations

What operations do we perform on these objects?

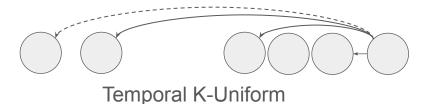

Version Volumes

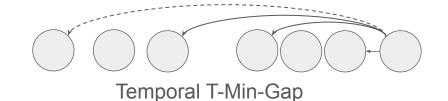
Volume	Range	Example Chain
Single	1	
Tiny	2-9	
Small	10-99	0000000000
Medium	100-999	99999999999999999999
Large	1000-9999	
Huge	10000+	

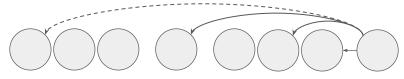

Version Densities



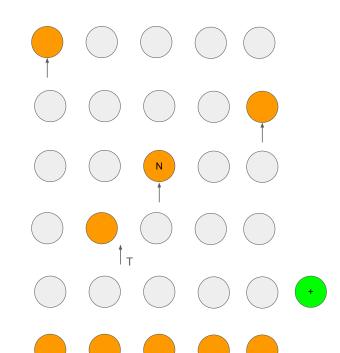
Linking Strategies: Basic




Linking Strategies: Sequential



Linking Strategies: Temporal



Temporal Exponential (Base B)

Operations

- Retrieve First
- Retrieve Latest
- Retrieve By Sequence Number (RBSN)
- Retrieve By Time (RBT)
- Add New
- List All

Costs

Link Count $S = b \cdot L + H$ **Storage Cost IPNS** Read **IPFS Write** $T = t_N N + t_F F + t_W W + t_U U + C$ Time Cost

IPFS Read

IPNS Update

Complexities

Strategy	Links Per Node	Add Node	RBT	RBSN	List All
Single	1	1	N	N	\overline{N}
Previous	1	1	N	N	N
Comprehensive	N	1	1	1	1
K-Previous	K	K	N'	N'	N'
K-Random	K	\sqrt{NK}	$\sqrt{N'}$	$\sqrt{N'}$	N'
Sequential K-Uniform	K	K	N'	N'	N'
Sequential S-Max-Gap	N/S	N/S	S	S	S
Sequential Base B Exponential	$\log N$	$\log^2 N$	$\log N$	$\log N$	N
Temporal K-Uniform	K	N'	$N_{T'}$	$N_{T'}$	N
Temporal T-Min-Gap	$ar{T}$	$ ar{T} $	$\bar{T} + N_T$	$\bar{T} + N_T$	N
Temp-Exp Base B (Time Unit T)	$\log{(ar{T})}$	$N_T \log ar{T}$	N_T	N_T	$N_T \log ar{T}$

N' = N/K

T* measures time between first and latest node

T' = T*/K T = T*/T

 $N_{\scriptscriptstyle T}$ is the maximum nodes for time window T.

Complexities

Strategy	Links Per Node	Add Node	RBT	RBSN	List All
Single	1	1	N	N	N
Previous	1	1	N	N	N
Comprehensive	N	1	1	1	1
K-Previous	K	K	N'	N'	N'
K-Random	K	\sqrt{NK}	$\sqrt{N'}$	$\sqrt{N'}$	N'
Sequential K-Uniform	K	K	N'	N'	N'
Sequential S-Max-Gap	N/S	N/S	S	S	S
Sequential Base B Exponential	$\log N$	$\log^2 N$	$\log N$	$\log N$	N
Temporal K-Uniform	K	N'	$N_{T'}$	$N_{T'}$	N
Temporal T-Min-Gap	$ar{T}$	$ar{T}$	$ar{T} + N_T$	$ar{T} + N_T$	N
Temp-Exp Base B (Time Unit T)	$\log{(ar{T})}$	$N_T \log \bar{T}$	N_T	N_T	$N_T \log ar{T}$

N' = N/K

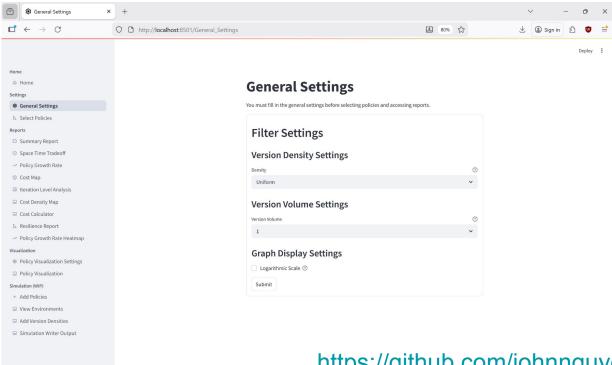
T* measures time between first and latest node

T' = T*/K T = T*/T

 $[\]ensuremath{N_{\scriptscriptstyle T}}$ is the maximum nodes for time window T.

Complexities

Strategy	Links Per Node	Add Node	RBT	RBSN	List All
Single	1	1	N	N	N
Previous	1	1	N	N	N
Comprehensive	N	1	1	1	1
K-Previous	K	K	N'	N'	N'
K-Random	K	\sqrt{NK}	$\sqrt{N'}$	$\sqrt{N'}$	N'
Sequential K-Uniform	K	K	N'	N'	N'
Sequential S-Max-Gap	N/S	N/S	S	S	S
Sequential Base B Exponential	$\log N$	$\log^2 N$	$\log N$	$\log N$	N
Temporal K -Uniform	K	N'	$N_{T'}$	$N_{T'}$	N
Temporal T-Min-Gap	$\mid ar{T} \mid$	$ ar{T} $	$ar{T} + N_T$	$ar{T} + N_T$	N
Temp-Exp Base B (Time Unit T)	$\log{(\bar{T})}$	$N_T \log \bar{T}$	N_T	N_T	$N_T \log ar{T}$

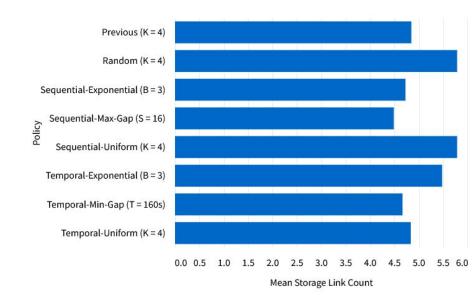

N' = N/K

T* measures time between first and latest node

T' = T*/K T = T*/T

 $[\]ensuremath{N_{\scriptscriptstyle T}}$ is the maximum nodes for time window T.

Experimental System



https://github.com/johnnguyenn77/iparo

Experimental Setup

- Windows 11 PC, 8 cores
- Chains have length 100
- 10 iterations per operation

Chosen Strategies

18

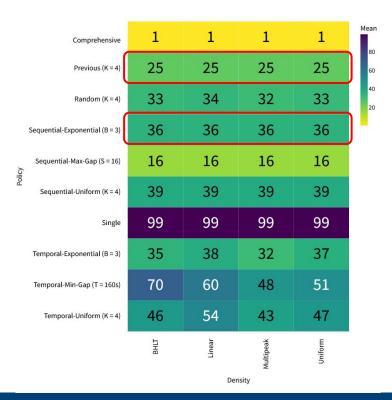
Experimental Storage and Time Cost

	Single	Comprehensive	Exponential
Retrieve First	100	2	2
Retrieve Latest	1	1	1
Retrieve By Seq. #	54	2	4.5
Retrieve By Time	54.4	2	4
Add New	0.99	0.99	6.65
List All	99	1	49
Links Per Node	0.99	49.5	6.65

Nodes: 100, Density: Uniform, Exp. Base: 2

Experimental Storage and Time Cost

	Single	Comprehensive	Exponential
Retrieve First	100	2	2
Retrieve Latest	1	1	1
Retrieve By Seq. #	54	2	4.5
Retrieve By Time	54.4	2	4
Add New	0.99	0.99	6.65
List All	99	1	49
Links Per Node	0.99	49.5	6.65


Nodes: 100, Density: Uniform, Exp. Base: 2

Experimental Storage and Time Cost

	Single	Comprehensive	Exponential
Retrieve First	100	2	2
Retrieve Latest	1	1	1
Retrieve By Seq. #	54	2	4.5
Retrieve By Time	54.4	2	4
Add New	0.99	0.99	6.65
List All	99	1	49
Links Per Node	0.99	49.5	6.65

Nodes: 100, Density: Uniform, Exp. Base: 2

Time Cost: List All

22

Conclusion and Future Work

- Which strategies to use?
 - Exponential: General Purpose
 - K-Previous: Many List All operations

- Future Work
 - Sampling other distributions
 - Which strategies are the most resilient?

Summary

Decentralized Versioning

IPFS IPNS IPARO

System Configurations

- 6 Volumes
- 4 Densities
- 11 Strategies
- 6 Operations
- 4 Parameters

Cost Analysis

Storage (for links)
Time (for operations)
Theoretical Complexities
Experimental Results

https://github.com/johnnguyenn77/iparo